Skip to main content
Log in

Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cyclic dipeptides are increasingly gaining importance as considering its significant biological and pharmacological activities. This study was aimed to investigate the anticancer activity of a dipeptide Cyclo(-Pro-Tyr) (DP) identified from marine sponge Callyspongia fistularis symbiont Bacillus pumilus AMK1 and the underlying apoptotic mechanisms in the liver cancer HepG2 cell lines. MTT assay was done to demonstrate the cytotoxic effect of DP in HepG2 cells and mouse Fibroblast McCoy cells. Initially, apoptosis inducing activity of DP was identified using propidium iodide (PI) and acridine orange/ethidium bromide (AO/EB) dual staining, then it was confirmed by DNA fragmentation assay and western blotting analysis of apoptosis related markers Bax, Bcl-2, cytochrome c, caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). Rhodamine 123 staining was performed to observe DP effects on the mitochondrial membrane potential (MMP) and DCFH-DA (Dichloro-dihydro-fluorescein diacetate) staining was done to measure the intracellular reactive oxygen species (ROS) levels. The MTT results revealed that DP initiated dose-dependent cytotoxicity in HepG2 cells, but no significant toxicity in mouse Fibroblast McCoy cells treated with DP at the specified concentrations. DP induced apoptosis, which is confirmed by the appearance of apoptotic bodies with PI and AO/EB dual staining, and DNA fragmentation. DP significantly elevated the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), enhanced cytochrome c release from mitochondria, increased caspase-3 activation, the cleavage of PARP and increased intracellular reactive oxygen species (ROS) levels. Besides this, DP successfully inhibited the phosphorylation of PI3K, AKT and increased PTEN expression. These results suggested DP might have anti-cancer effect by initiating apoptosis through mitochondrial dysfunction and downregulating PI3K/Akt signaling pathway in HepG2 cells with no toxicity effect on normal fibroblast cells. Therefore, DP may be developed as a potential alternative therapeutic agent for treating hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Daher S, Massarwa M, Benson AA, Khoury T (2018) Current and future treatment of hepatocellular carcinoma: an updated comprehensive review. J Clin Transl Hepatol 6(1):69–78. https://doi.org/10.14218/JCTH.2017.00031

    Article  PubMed  Google Scholar 

  3. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983–8998

    Article  CAS  PubMed  Google Scholar 

  4. Vitale FV, Romeo P, Luciani B, Raffaele M, Colina P, Ferraù F (2015) Mitomycin-based hepatic arterial infusion chemotherapy for solitary ampullary cancer liver metastasis: an unusual treatment for an uncommon disease. J Oncol Pharm Pract 21(5):396–399. https://doi.org/10.1177/1078155214531512

    Article  CAS  PubMed  Google Scholar 

  5. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87. https://doi.org/10.1186/1756-9966-30-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64(4):821–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hata AN, Engelman JA, Faber AC (2015) The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov 5(5):475–487. https://doi.org/10.1158/2159-8290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 8(4):603–619. https://doi.org/10.18632/aging.100934

    Article  CAS  Google Scholar 

  11. Campbell KJ, Tait SWG (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Biol. https://doi.org/10.1098/rsob.180002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martelli AM, Evangelisti C, Chiarini F, McCubrey JA (2010) The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 1(2):89–103

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xie X, Tang B, Zhou J, Gao Q, Zhang P (2013) Inhibition of the PI3K/Akt pathway increases the chemosensitivity of gastric cancer to vincristine. Oncol Rep 30(2):773–782. https://doi.org/10.3892/or.2013.2520

    Article  CAS  PubMed  Google Scholar 

  14. Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, Marrack P, Bratton DL, Henson PM (2004) Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279(20):21085–21095

    Article  CAS  PubMed  Google Scholar 

  15. Kuo ML, Chuang SE, Lin MT, Yang SY (2001) The involvement of PI 3-K/Akt-dependent up-regulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleukin-6. Oncogene 20(6):677–685

    Article  CAS  PubMed  Google Scholar 

  16. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430

    Article  CAS  PubMed  Google Scholar 

  17. Rohde S, Nietzer S, Schupp PJ (2015) Prevalence and mechanisms of dynamic chemical defenses in tropical sponges. PLoS ONE 10(7):e0132236. https://doi.org/10.1371/journal.pone.0132236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erba E, Bergamaschi D, Bassano L, Damia G, Ronzoni S, Faircloth GT, D'Incalci M (2001) Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action. Eur J Cancer 37(1):97–105

    Article  CAS  PubMed  Google Scholar 

  19. Kuznetsov G, Towle MJ, Cheng H, Kawamura T, TenDyke K, Liu D, Kishi Y, Yu MJ, Littlefield BA (2004) Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res 64(16):5760–5766

    Article  CAS  PubMed  Google Scholar 

  20. Xu Q, Huang KC, Tendyke K, Marsh J, Liu J, Qiu D, Littlefield BA, Nomoto K, Atasoylu O, Risatti CA, Sperry JB, Smith AB (2011) In vitro and in vivo anticancer activity of (+)-spongistatin 1. Anticancer Res 31(9):2773–2779

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Piplani H, Rana C, Vaish V, Vaiphei K, Sanyal SN (2013) Dolastatin, along with Celecoxib, stimulates apoptosis by a mechanism involving oxidative stress, membrane potential change and PI3-K/AKT pathway down regulation. Biochim Biophys Acta 830(11):5142–5156. https://doi.org/10.1016/j.bbagen.2013.07.011

    Article  CAS  Google Scholar 

  22. Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FA, Giaccone G (2005) Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling. Mol Pharmacol 68(2):502–510

    Article  CAS  PubMed  Google Scholar 

  23. Huang R, Zhou X, Xu T, Yang X, Liu Y (2010) Diketopiperazines from marine organisms. Chem Biodivers 7(12):2809–2829. https://doi.org/10.1002/cbdv.200900211

    Article  CAS  PubMed  Google Scholar 

  24. Karanam G, Arumugam MK, Sirpu Natesh N (2019) Anticancer effect of marine sponge-associated Bacillus pumilus AMK1 derived dipeptide Cyclo (-Pro-Tyr) in human liver cancer cell line through apoptosis and G2/M phase arrest. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-09850-2

    Article  Google Scholar 

  25. Sirpu Natesh N, Arumugam MK (2019) A novel apoptosis-inducing metabolite isolated from marine sponge symbiont Monascus sp. NMK7 attenuates cell proliferation, migration and ROS stress-mediated apoptosis in breast cancer cells. RSC Adv 9:5878–5890

    Article  Google Scholar 

  26. Rahbar Saadat Y, Saeidi N, Zununi Vahed S, Barzegari A, Barar J (2015) An update to DNA ladder assay for apoptosis detection. Bioimpacts 5(1):25–28. https://doi.org/10.15171/bi.2015.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang J, Yu S, Jiang Z, Liang C, Yu W, Li J, Du X, Wang H, Gao X, Wang X (2014) N-acetyl-serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. Oxid Med Cell Longev. https://doi.org/10.1155/2014/310504

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rastogi RP, Singh SP, Häder DP, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397(3):603–607. https://doi.org/10.1016/j.bbrc.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  29. Das J, Sarkar A, Sil PC (2015) Hexavalent chromium induces apoptosis in human liver (HepG2) cells via redox imbalance. Toxicol Rep 2:600–608. https://doi.org/10.1016/j.toxrep.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Madankumar A, Jayakumar S, Gokuladhas K, Rajan B, Raghunandhakumar S, Asokkumar S, Devaki T (2013) Geraniol modulates tongue and hepatic phase I and phase II conjugation activities and may contribute directly to the chemopreventive activity against experimental oral carcinogenesis. Eur J Pharmacol 705(1–3):148–155. https://doi.org/10.1016/j.ejphar.2013.02.048

    Article  CAS  PubMed  Google Scholar 

  31. Nagabhishek SN, Kumar AM, Sambhavi B, Balakrishnan A, Katakia YT, Chatterjee S (2019) A marine sponge associated fungal metabolite monacolin X suppresses angiogenesis by down regulating VEGFR2 signaling. RSC Adv 9:26646–26667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karmakar S, Banik NL, Ray SK (2007) Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res 32(12):2103–2113

    Article  CAS  PubMed  Google Scholar 

  33. Al-Khayal K, Alafeefy A, Vaali-Mohammed MA, Mahmood A, Zubaidi A, Al-Obeed O, Khan Z, Abdulla M, Ahmad R (2017) Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration. BMC Cancer 17(1):4. https://doi.org/10.1186/s12885-016-3005-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee Y, Phat C, Hong SC (2017) Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 95:94–105. https://doi.org/10.1016/j.peptides.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Song J, Jeon JE, Won TH, Sim CJ, Oh DC, Oh KB, Shin J (2014) New cyclic cysteine bridged peptides from the sponge Suberites waedoensis. Mar Drugs 12(5):2760–2770. https://doi.org/10.3390/md12052760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vázquez-Rivera D, González O, Guzmán-Rodríguez J, Díaz-Pérez AL, Ochoa-Zarzosa A, López-Bucio J, Campos-García J (2015) Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. Biomed Res Int. https://doi.org/10.1155/2015/197608

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci. https://doi.org/10.3390/ijms19020448

    Article  PubMed  PubMed Central  Google Scholar 

  38. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008672

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roy S, Bayly CI, Gareau Y, Houtzager VM, Kargman S, Keen SL, Rowland K, Seiden IM, Thornberry NA, Nicholson DW (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic "safety catch" regulatory tripeptide. Proc Natl Acad Sci USA 98(11):6132–6137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X (2003) Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299(5604):223–226

    Article  CAS  PubMed  Google Scholar 

  41. Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57(2):187–215

    Article  CAS  PubMed  Google Scholar 

  42. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157(5):1415–1430. https://doi.org/10.1016/S0002-9440(10)64779-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryan L, O'Callaghan YC, O'Brien NM (2004) Generation of an oxidative stress precedes caspase activation during 7beta-hydroxycholesterol-induced apoptosis in U937 cells. J Biochem Mol Toxicol 18(1):50–59

    Article  CAS  PubMed  Google Scholar 

  44. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3(11):697–707

    Article  CAS  PubMed  Google Scholar 

  45. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X (2019) Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 19(6):4529–4535. https://doi.org/10.3892/mmr.2019.10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. https://doi.org/10.1038/onc.2008.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Xia XC, Meng LY, Wang Y, Li YM (2019) Alisol B 23-acetate inhibits the viability and induces apoptosis of non-small cell lung cancer cells via PI3K/AKT/mTOR signal pathway. Mol Med Rep 20(2):1187–1195. https://doi.org/10.3892/mmr.2019.10355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103:699–707. https://doi.org/10.1016/j.biopha.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  50. Yuan L, Wang J, Xiao H, Xiao C, Wang Y, Liu X (2012) Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. Toxicol Appl Pharmacol 265(1):83–92. https://doi.org/10.1016/j.taap.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  51. Hernández-Padilla L, Vázquez-Rivera D, Sánchez-Briones LA, Díaz-Pérez AL, Moreno-Rodríguez J, Moreno-Eutimio MA, Meza-Carmen V, Cruz H-D, Campos-García J (2017) The Antiproliferative effect of cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa cells involves inhibition of phosphorylation of Akt and S6k kinases. Molecules 22:1024

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The corresponding author is grateful to the grant sanctioned by Aquaculture and Marine biotechnology, Department of Biotechnology, Govt of India under research Grant (SAN No. 102/IFD/SAN/754/2016-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan Kumar Arumugam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanam, G., Arumugam, M. Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr). Mol Biol Rep 47, 3347–3359 (2020). https://doi.org/10.1007/s11033-020-05407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05407-5

Keywords

Navigation