Skip to main content

Advertisement

Log in

Aboveground Carbon Stocks in Rapidly Expanding Mangroves in New Zealand: Regional Assessment and Economic Valuation of Blue Carbon

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Blue carbon is increasingly being considered in global carbon budgets; however, there is poor understanding of how carbon stocks vary within mangrove forests with heterogeneous growth forms and in areas where mangroves are showing rapid changes in distribution. Here, field measurements and LiDAR data were used to estimate aboveground carbon stocks and economic benefits of Avicennia marina in the Auckland Region, New Zealand, where the mangrove area has increased at an annual rate of 3.2% since 1940. Multiple allometric equations were explored to determine best fits for different growth forms (tall and dwarf mangroves) that minimised uncertainty in conversions of tree size to aboveground carbon stock estimates. Across the Auckland Region, the mean total aboveground carbon stock (including trees, seedling, pneumatophores and woody debris) was 40.2 Mg C ha−1 with over 75% contained in tree biomass. Total aboveground carbon stocks varied considerably between mangrove growth form (tall and dwarf mangroves) and hydrodynamic conditions (estuarine, riverine and delta mangroves). Total aboveground carbon storage across the Auckland Region amounted to 384,451 Mg C with an economic value of US$ 70 million. This study demonstrates that LiDAR data can be used to produce reliable and high-resolution tree carbon stock estimates in estuaries characterised by spatially variable distributions of dwarf mangroves. These estimates are critical for the incorporation of mangroves into national blue carbon accounting schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman, F., and E.A. Stanton. 2012. Climate risks and carbon prices: revising the social cost of carbon. Economics: The Open-Access, Open-Assessment E-Journal 6 (2012–10): 1–25. https://doi.org/10.5018/economics-ejournal.ja.2012-10.

    Article  Google Scholar 

  • Alavaisha, E., and M.M. Mangora. 2016. Carbon stocks in the small estuarine mangroves of Geza and Mtimbwani, Tanga, Tanzania. International Journal of Forestry Research. https://doi.org/10.1155/2016/2068283.

  • Asner, G.P., G.V. Powell, J. Mascaro, D.E. Knapp, J.K. Clark, J. Jacobson, and R.F. Hughes. 2010. High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences of the United States of America 107 (38): 16738–16742. https://doi.org/10.1073/pnas.1004875107.

    Article  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193. https://doi.org/10.1890/10-1510.1.

    Article  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, T.J. Smith, and C.J. Sanders. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research: Biogeosciences 119 (10): 2032–2048. https://doi.org/10.1002/2014JG002715.

    Article  CAS  Google Scholar 

  • Bulmer, R.H., L. Schwendenmann, and C.J. Lundquist. 2016a. Carbon and nitrogen stocks and below-ground allometry in temperate mangroves. Frontiers in Marine Science 3: 150. https://doi.org/10.3389/fmars.2016.00150.

    Article  Google Scholar 

  • Bulmer, R.H., L. Schwendenmann, and C.J. Lundquist. 2016b. Allometric models for estimating aboveground biomass, carbon and nitrogen stocks in temperate Avicennia marina forests. Wetlands 36 (5): 841–848. https://doi.org/10.1007/s13157-016-0793-0.

    Article  Google Scholar 

  • Chave, J., C. Andalo, S. Brown, M. Cairns, J. Chambers, D. Eamus, and T. Kira. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1): 87–99. https://doi.org/10.1007/s00442-005-0100-x.

    Article  CAS  Google Scholar 

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17 (4): 1111. https://doi.org/10.1029/2002GB001917.

    Article  CAS  Google Scholar 

  • Clough, B., P. Dixon, and O. Dalhaus. 1997. Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Australian Journal of Botany 45 (6): 1023–1031. https://doi.org/10.1071/BT96075.

    Article  Google Scholar 

  • Comley, B., and K. McGuinness. 2005. Above-and below-ground biomass, and allometry, of four common northern Australian mangroves. Australian Journal of Botany 53 (5): 431–436. https://doi.org/10.1071/BT04162.

    Article  Google Scholar 

  • Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002.

    Article  Google Scholar 

  • Dencer-Brown, A., A. Alfaro, S. Milne, and J. Perrott. 2018. A review on biodiversity, ecosystem services and perceptions of New Zealand’s mangroves: can we make informed decisions about their removal? Resources 7 (1): 23. https://doi.org/10.3390/resources7010023.

    Article  Google Scholar 

  • Donato, D.C., J.B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4 (5): 293–297. https://doi.org/10.1038/NGEO1123.

    Article  CAS  Google Scholar 

  • Doughty, C.L., J.A. Langley, W.S. Walker, I.C. Feller, R. Schaub, and S.K. Chapman. 2016. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39 (2): 385–396. https://doi.org/10.1007/s12237-015-9993-8.

    Article  CAS  Google Scholar 

  • Duarte, C.M., I.J. Losada, I.E. Hendriks, I. Mazarrasa, and N. Marbà. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968. https://doi.org/10.1038/nclimate1970.

    Article  CAS  Google Scholar 

  • Estrada, G.C.D., and M.L.G. Soares. 2017. Global patterns of aboveground carbon stock and sequestration in mangroves. Anais da Academia Brasileira de Ciências 89 (2): 973–989. https://doi.org/10.1590/0001-3765201720160357.

    Article  CAS  Google Scholar 

  • Fatoyinbo, T., E.A. Feliciano, D. Lagomasino, S.K. Lee, and C. Trettin. 2018. Estimating mangrove aboveground biomass from airborne lidar data: a case study from the Zambezi River delta. Environmental Research Letters 13: 12. 025012. https://doi.org/10.1088/1748-9326/aa9f03.

    Article  Google Scholar 

  • Feliciano, E.A., S. Wdowinski, M.D. Potts, S. Lee, and T.E. Fatoyinbo. 2017. Estimating mangrove canopy height and above-ground biomass in the Everglades National Park with airborne LiDAR and TanDEM-X data. Remote Sensing 9 (7): 702. https://doi.org/10.3390/rs9070702.

    Article  Google Scholar 

  • Goerndt, M.E., V.J. Monleon, and H. Temesgen. 2010. Relating forest attributes with area-and tree-based light detection and ranging metrics for western Oregon. Western Journal of Applied Forestry 25 (3): 105–111. https://doi.org/10.1093/wjaf/25.3.105.

    Article  Google Scholar 

  • Hayes, M.A., A. Jesse, B. Hawke, J. Baldock, B. Tabet, D. Lockington, and C.E. Lovelock. 2017. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Global Change Biology 23 (10): 4222–4234. https://doi.org/10.1111/gch.13722.

    Article  Google Scholar 

  • Heath, L.S., and J.E. Smith. 2000. An assessment of uncertainty in forest carbon budget projections. Environmental Science & Policy 3 (2): 73–82. https://doi.org/10.1016/S1462-9011(00)00075-7.

    Article  CAS  Google Scholar 

  • Hickey, S.M., N.J. Callow, S. Phinn, C.E. Lovelock, and C.M. Duarte. 2018. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: a remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science 200: 194–201. https://doi.org/10.1016/j.ecss.2017.11.004.

    Article  CAS  Google Scholar 

  • Himes-Cornell, A., S.O. Grose, and L. Pendleton. 2018. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Frontiers in Marine Science 5: 376. https://doi.org/10.3389/fmars.2018.00376.

    Article  Google Scholar 

  • Holdaway, R.J., S.J. McNeill, N.W. Mason, and F.E. Carswell. 2014. Propagating uncertainty in plot-based estimates of forest carbon stock and carbon stock change. Ecosystems 17 (4): 627–640. https://doi.org/10.1007/s10021-014-9749-5.

    Article  CAS  Google Scholar 

  • Howard, J., E. McLeod, S. Thomas, E. Eastwood, M. Fox, L. Wenzel, and E. Pidgeon. 2017. The potential to integrate blue carbon into MPA design and management. Aquatic Conservation: Marine Freshwater Ecosystem 27 (S1): 100–115. https://doi.org/10.1002/aqc.2809.

    Article  Google Scholar 

  • IPCC. 2013. Climate Change2013: the physical science basis. In Contribution of working group it of the first assessment report of the intergovernmental panel on climate change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 1535. Carmbridge: Cambridge University Press.

    Google Scholar 

  • Jerath, M., M. Bhat, V.H. Rivera-Monroy, E. Castañeda-Moya, M. Simard, and R.R. Twilley. 2016. The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA. Environmental Science & Policy 66: 160–169. https://doi.org/10.1016/j.envsci.2016.09.005.

    Article  CAS  Google Scholar 

  • Kauffman, J.B., and D. Donato. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. (No. Working Paper 86). Bogor: Center for International Forestry Research (CIFOR).

    Google Scholar 

  • Komiyama, A., S. Poungparn, and S. Kato. 2005. Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21 (04): 471–477. https://doi.org/10.1017/S0266467405002476.

    Article  Google Scholar 

  • Komiyama, A., J.E. Ong, and S. Poungparn. 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany 89 (2): 128–137. https://doi.org/10.1016/j.aquabot.2007.12.006.

    Article  Google Scholar 

  • Leitold, V., M. Keller, D.C. Morton, B.C. Cook, and Y.E. Shimabukuro. 2015. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Carbon Balance Management 10 (3): 1–12. https://doi.org/10.1186/s13021-015-0013-x.

    Article  CAS  Google Scholar 

  • Lewis, C.J.E., P.E. Carnell, J. Sanderman, J.A. Baldock, and P.I. Macreadie. 2017. Variability and vulnerability of coastal ‘blue carbon’ stocks: a case study from Southeast Australia. Ecosystems 21 (2): 263–279. https://doi.org/10.1007/s10021-017-0150-z.

    Article  CAS  Google Scholar 

  • Lim, K., P. Treitz, M. Wulder, B. St-Onge, and M. Flood. 2003. LiDAR remote sensing of forest structure. Progress in Physical Geography 27 (1): 88–106. https://doi.org/10.1191/0309133303pp360ra.

    Article  Google Scholar 

  • Lovelock, C. E., I.C. Feller, K.L McKee, and R. Thompson. 2005. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribbean Journal of Science 451 41(3): 456–464. https://doi.org/ISSN 0008–6452.

  • Macreadie, P.I., A. Anton, J.A. Raven, N. Beaumont, R.M. Connolly, D.A. Friess, J.J. Kelleway, H. Kennedy, T. Kuwae, P.A. Lavery, C.E. Lovelock, D.A. Smale, E.T. Apostolaki, T.B. Atwood, J. Baldock, T.A. Bianchi, G.L. Chmura, B.D. Eyre, J.W. Fourqurean, J.M. Hall-Spencer, M. Huxham, I.E. Hendriks, D. Krause-Jensen, J.M. Laffoley, T. Luisetti, N. Marbà, P. Masque, K.J. McGlathery, P.J. Megonigal, D. Murdiyaso, B.D. Russell, R. Santos, O. Serrano, B.R. Silliman, K. Watanabe, and C.M. Duarte CM. 2019. The future of blue carbon science. Nature Communications 10 (1): 3998 (2019). https://doi.org/10.1038/s41467-019-11693-w.

    Article  CAS  Google Scholar 

  • McLeod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, and B.R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9 (10): 552–560. https://doi.org/10.1890/110004.

    Article  Google Scholar 

  • Morrisey, D.J., A. Swales, S. Dittmann, M.A. Morrison, C.E. Lovelock, and C.M. Beard. 2010. The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review 48: 43–160. https://doi.org/10.1201/EBK1439821169-c2.

    Article  Google Scholar 

  • Muller-Landau, H.C., M. Detto, R.A. Chisholm, S.P. Hubbell, and R. Condit. 2014. Detecting and projecting changes in forest biomass from plot data. In Forests and global change, ed. D.A. Coomes, D.F.R.P. Burslem, and W.D. Simonson, 381–415. Cambridge University Press. https://doi.org/10.1017/CBO9781107323506.018.

  • NASEM (National Academies of Sciences, Engineering, and Medicine). 2017. Valuing climate damages: updating estimation of the social cost of carbon dioxide. Washington, DC: The National Academies Press. https://doi.org/10.17226/24651.

    Book  Google Scholar 

  • Nellemann, C., E. Corcoran, C.M. Duarte, L. Valdrés, C.D. Young, L. Fonseca, and G. Grimsditch. 2009. Blue Carbon - The Role of Healthy Oceans in Binding Carbon. UN Environment, GRID-Arendal. www.grida.no. Accessed 15 Aug 2019.

  • Osland, M.J., R.H. Day, J.C. Larriviere, and A.S. From. 2014. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS One 9 (6): e99604. https://doi.org/10.1371/journal.pone.0099604.

    Article  CAS  Google Scholar 

  • Patterson, M.G., and A.O. Cole. 2013. Total economic value of New Zealand’s land-based ecosystems and their services. In Ecosystem Services in New Zealand–conditions and trends, 496–510. Lincoln: Manaaki Whenua Press.

    Google Scholar 

  • Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Siflet, C. Craft, J.W. Fourqurean, J.B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7 (9): e43542. https://doi.org/10.1371/journal.pone.0043542.

    Article  CAS  Google Scholar 

  • Pereira, F.R.D.S., M. Kampel, M.L.G. Soares, G.C.D. Estrada, C. Bentz, and G. Vincent. 2018. Reducing uncertainty in mapping of mangrove aboveground biomass using airborne discrete return Lidar data. Remote Sensing 10: 637. https://doi.org/10.3390/rs1004063.

    Article  Google Scholar 

  • Polidoro, B.A., K.E. Carpenter, L. Collins, N.C. Duke, A.M. Ellison, J.C. Ellison, E.J. Farnsworth, E.S. Fernando, K. Kathiresan, N.E. Koedam, S.R. Livingstone, T. Miyagi, G.E. Moore, V. Ngoc Nam, J.E. Ong, J.H. Primavera, S.G. Salmo, J.C. Sanciangco, S. Sukardjo, Y. Wang, and J. Yong. 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5 (4): e10095. https://doi.org/10.1371/journal.pone.0010095.

    Article  CAS  Google Scholar 

  • Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1989. Numerical Recipes-The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Radabaugh, K.R., R.P. Moyer, A.R. Chappel, C.E. Powell, I. Bociu, B.C. Clark, and J.M. Smoak. 2018. Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA. Estuaries and Coasts 41 (5): 1496–1510. https://doi.org/10.1007/s12237-017-0362-7.

    Article  CAS  Google Scholar 

  • Rahman, M., M.N.I. Khan, A.F. Hoque, and I. Ahmed. 2014. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management 23: 269–283. https://doi.org/10.1007/s11273-014-9379-x.

    Article  Google Scholar 

  • Ricke, K., L. Drouet, K. Caldeira, and M. Tavoni. 2018. Country-level social cost of carbon. Nature Climate Change 8: 895–900. https://doi.org/10.1038/s41558-018-0282-y.

    Article  CAS  Google Scholar 

  • Rogers, K., P.I. Macreadie, J.J. Kelleway, and N. Saintilan. 2019. Blue carbon in coastal landscapes: a spatial framework for assessment of stocks and additionality. Sustainability Science 14 (2): 453–467. https://doi.org/10.1007/s11625-018-0575-0.

    Article  Google Scholar 

  • Rovai, A., P. Riul, R. Twilley, E. Castañeda-Moya, V. Rivera Monroy, A. Williams, and S. Crooks. 2016. Scaling mangrove aboveground biomass from site level to continental scale. Global Ecology and Biogeography 25: 286–298. https://doi.org/10.1111/geb.12409.

    Article  Google Scholar 

  • Saintilan, N. 1997. Above and below-ground biomass of mangroves in a sub-tropical estuary. Marine and Freshwater Research 48 (7): 601–604. https://doi.org/10.1071/MF97009.

    Article  Google Scholar 

  • Saintilan, N., N.C. Wilson, K. Rogers, A. Rajkaran, and K.W. Krauss. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20 (1): 147–157. https://doi.org/10.1111/gcb.12341.

    Article  Google Scholar 

  • Siikamaki, J., J.N. Sanchirico, and S.L. Jardine. 2012. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proceedings of the National Academy of Sciences of the United States of America 109 (36): 14369–14374. https://doi.org/10.1073/pnas.1200519109.

    Article  Google Scholar 

  • Simard, M., K. Zhang, V.H. Rivera-Monroy, M.S. Ross, P.L. Ruiz, E. Castañeda-Moya, and E. Rodriguez. 2006. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering & Remote Sensing 72 (3): 299–311. https://doi.org/10.14358/PERS.72.3.299.

    Article  Google Scholar 

  • Smith, P., M. Bustamante, H. Ahammad, H. Clark, H. Dong, E.A. Elsiddig, H. Haberl, R. Harper, J. House, M. Jafari, O. Masera, C. Mbow, N.H. Ravindranath, C.W. Rice, C.R. Abad, A. Romanovskaya, F. Sperling, and F.N. Tubiello. 2014. Agriculture, Forestry and Other Land Use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, ed. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, et al., 811–922. Cambridge, and New York: Cambridge University Press.

    Google Scholar 

  • Suyadi, J., C.J. Lundquist Gao, and L. Schwendenmann. 2018a. Sources of uncertainty in mapping temperate mangroves and their minimization using innovative methods. International Journal of Remote Sensing 39 (1): 17–36. https://doi.org/10.1080/01431161.2017.137845.

    Article  Google Scholar 

  • Suyadi, J., C.J. Lundquist Gao, and L. Schwendenmann. 2018b. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuarine, Coastal and Shelf Science 215: 1–10. https://doi.org/10.1016/j.ecss.2018.10.005.

    Article  Google Scholar 

  • Suyadi, J., C.J. Lundquist Gao, and L. Schwendenmann. 2019. Land-based and climatic stressors of mangrove cover change in the Auckland Region, New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1466–1483. https://doi.org/10.1002/aqc.3146.

    Article  Google Scholar 

  • Thomas, N., R. Lucas, P. Bunting, A. Hardy, A. Rosenqvist, and M. Simard. 2017. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One 12 (6): e0179302. https://doi.org/10.1371/journal.pone.0179302.

    Article  CAS  Google Scholar 

  • Tran, P., I. Gritcan, J. Cusens, A.C. Alfaro, and S. Leuzinger. 2017. Biomass and nutrient composition of temperate mangroves (Avicennia marina var. australasica) in New Zealand. New Zealand Journal of Marine and Freshwater Research 51 (3): 427–442. https://doi.org/10.1080/00288330.2016.1260604.

    Article  CAS  Google Scholar 

  • Valiela, I., J.L. Bowen, and J.K. York. 2001. Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51: 807–815. https://doi.org/10.1641/0006-3568.

    Article  Google Scholar 

  • Van Wagner, C. 1968. The line intersect method in forest fuel sampling. Forest Science 14 (1): 20–26. https://doi.org/10.1093/forestscience/14.1.20.

    Article  Google Scholar 

  • Wang, D., B. Wan, P. Qiu, Z. Zuo, R. Wang, and X. Wu. 2019. Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV-LiDAR sampling. Remote Sensing 11 (18): 2156. https://doi.org/10.3390/rs11182156.

    Article  Google Scholar 

  • Williamson, P. 2016. Scrutinize CO2 removal methods: the viability and environmental risks of removing carbon dioxide from the air must be assessed if we are to achieve the Paris goals. Nature 530 (7589): 153–156. https://doi.org/10.1038/530153a.

    Article  CAS  Google Scholar 

  • Woodroffe, C.D. 1985. Studies of a mangrove basin, tuff crater, New Zealand: I. Mangrove biomass and production of detritus. Estuarine, Coastal and Shelf Science 20 (3): 265–280. https://doi.org/10.1016/0272-7714(85)90042-3.

    Article  Google Scholar 

  • Wulder, M.A., J.C. White, C.W. Bater, N.C. Coops, C. Hopkinson, and G. Chen. 2012. Lidar plots a new large-area data collection option: context, concepts, and case study. Canadian Journal of Remote Sensing 38 (5): 600–618. https://doi.org/10.5589/m12-049.

    Article  Google Scholar 

  • Yanai, R.D., J.J. Battles, A.D. Richardson, C.A. Blodgett, D.M. Wood, and E.B. Rastetter. 2010. Estimating uncertainty in ecosystem budget calculations. Ecosystems 13 (2): 239–248. https://doi.org/10.1007/s10021-010-9315-8.

    Article  CAS  Google Scholar 

  • Yang, C., J. Gao, A. Cheung, B. Liu, L. Schwendenmann, and M.J. Costello. 2013. Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand. Estuarine, Coastal and Shelf Science 134: 11–18. https://doi.org/10.1016/j.ecss.2013.09.017.

    Article  CAS  Google Scholar 

  • Yin, D., and L. Wang. 2019. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sensing of Environment 223: 34–49. https://doi.org/10.1016/j.rse.2018.12.034.

    Article  Google Scholar 

  • Zhang, K., P. Houle, M. Ross, P. Ruiz, and M. Simard. 2006. Airborne laser mapping of mangroves on the Biscayne Bay coast, Miami, Florida. Proceedings of 2006 IEEE International Geoscience and Remote Sensing Symposium & 27th Canadian Symposium on Remote Sensing, July 31–August 04, at Denver, Colorado, USA, IEEE:3750–3754. https://doi.org/10.1109/IGARSS.2006.961.

  • Zhou, J., Z. Zhao, Q. Zhao, J. Zhao, and H. Wang. 2013. Quantification of aboveground forest biomass using Quickbird imagery, topographic variables, and field data. Journal of Applied Remote Sensing 7 (1): 073484. https://doi.org/10.1117/1.JRS.7.073484.

    Article  Google Scholar 

  • Zolkos, S.G., S.J. Goetz, and R. Dubayah. 2013. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment 128: 289–298. https://doi.org/10.1016/j.rse.2012.10.017.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chris Ryan, Hae-Na Kim, Marloes Schravesande, Kelly Timmermans, Minzi Liu, Jacqui Vanderhorn, Mara Dongoran, Natalia Abrego, Shula Cowley and Taylor Douglas for their support with field and laboratory work. Thank you to Julia Jakobsson for preparing Fig. 2. We also thank the reviewers and editors for their helpful comments. The first author would like to thank Program Bantuan Seminar Luar Negeri, Ditjen Penguatan Riset dan Pengembangan Kemenristek dikti for providing support during the preparation of the manuscript.

Funding

Funding for this research was provided by a New Zealand – ASEAN Scholar Award to Suyadi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luitgard Schwendenmann.

Additional information

Communicated by Dan Friess

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyadi, Gao, J., Lundquist, C.J. et al. Aboveground Carbon Stocks in Rapidly Expanding Mangroves in New Zealand: Regional Assessment and Economic Valuation of Blue Carbon. Estuaries and Coasts 43, 1456–1469 (2020). https://doi.org/10.1007/s12237-020-00736-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00736-x

Keywords

Navigation