Skip to main content
Log in

Effect of the nanocapsulated adjuvant Sapomax on the expression of some immune response genes

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The use of the nanocapsulated adjuvant Sapomax increased the expression of innate immunity genes (H2Q10, Ddx58, Tyk2, Tlr3, Tlr7, and TNF) responsible for the primary recognition of influenza virus, i.e., those belonging to the RLR and TLR families; genes involved in stimulating the production of type I and III IFN and pro-inflammatory cytokines; and Th1 and Th2 cellular immunity genes (Ccr4, Ccr5, IFNγ, IL-2, IL-4, and IL-10) responsible for triggering regulatory immune mechanisms in the cell. The high immunological activity of the plant-derived nanocapsulated adjuvant Sapomax may be used to enhance the efficacy of vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Son YO, Kook SH, Lee JC (2017) Glycoproteins and polysaccharides are the main class of active constituents required for lymphocyte stimulation and antigen-specific immune response induction by traditional medicinal herbal plants. J Med Food. https://doi.org/10.1089/jmf.2017.3943

    Article  PubMed  Google Scholar 

  2. Wei W, Feng L, Bao WR et al (2016) Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J Agric Food Chem 64:881–889. https://doi.org/10.1021/acs.jafc.5b05180

    Article  CAS  PubMed  Google Scholar 

  3. Brunner R, Jensen-Jarolim E, Pali-Schöll I (2010) The ABC of clinical and experimental adjuvants—a brief overview. Immunol Lett 128(1):29–35. https://doi.org/10.1016/j.imlet.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Meshcheryakova E, Makarov E, Philpott D et al (2007) Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides. Vaccine. 25:4515–4520. https://doi.org/10.1016/j.vaccine.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Glenny AT, Pope CG, Waddington H, Wallace U (1926) Immunological notes. J Pathol Bacteriol 29:31–40. https://doi.org/10.1002/path.1700290106

    Article  CAS  Google Scholar 

  6. Jones FG (1936) The antitoxic titer of human subjects following immunization with tetanus toxoid and tetanus alum precipitated toxoid. J Immunol 30:115–125

    Google Scholar 

  7. Goullé JP, Grangeot-Keros L (2019) Aluminum and vaccines: current state of knowledge. Med Mal Infect. https://doi.org/10.1016/j.medmal.2019.09.012

    Article  PubMed  Google Scholar 

  8. Kensil CR, Patel U, Lennick M, Marciani D (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 146:431–437

    CAS  PubMed  Google Scholar 

  9. Hu KF, Ekstrom J, Merza M et al (1999) Induction of antibody responses in the common mucosal immune system by respiratory syncitial virus immunostimulating complex. Med Microbiol Immunol 187:191–198. https://doi.org/10.1007/s004300050092

    Article  CAS  PubMed  Google Scholar 

  10. Shah RR, Hassett KJ, Brito LA (2017) Overview of vaccine adjuvants: introduction, history, and current status. Methods Mol Biol 1494:1–13. https://doi.org/10.1007/978-1-4939-6445-1_1

    Article  CAS  PubMed  Google Scholar 

  11. Turmagambetova AS, Alexyuk PG, Bogoyavlenskiy AP et al (2017) Adjuvant activity of saponins from Kazakhstani plants on the immune responses to subunit influenza vaccine. Arch Virol 162(12):3817–3826. https://doi.org/10.1007/s00705-017-3560-5

    Article  CAS  PubMed  Google Scholar 

  12. Berezin VE, Zaides VM, Isaeva ES et al (1988) Controlled organization of multimolecular complexes of enveloped virus glycoproteins: study of immunogenicity. Vaccine 6:450–456. https://doi.org/10.1016/0264-410X(88)90148-X

    Article  CAS  PubMed  Google Scholar 

  13. Klimov A, Balish A, Veguilla V et al (2012) Influenza virus titration, antigenic characterization, and serological methods for antibody detection. Methods Mol Biol 865:25–51. https://doi.org/10.1007/978-1-61779-621-0_3

    Article  CAS  PubMed  Google Scholar 

  14. Carlsson N, Borde A, Wölfel S et al (2011) Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers. Anal Biochem 411(1):116–121. https://doi.org/10.1016/j.ab.2010.12.026

    Article  CAS  PubMed  Google Scholar 

  15. He P, Zou Y, Hu Z (2015) Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother 11:477–488. https://doi.org/10.1080/21645515.2014.1004026

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rehwinkel J, Tan CP, Goubau D et al (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397–408. https://doi.org/10.1016/j.cell.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  17. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL (2008) UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452:234–238. https://doi.org/10.1038/nature06726

    Article  CAS  PubMed  Google Scholar 

  18. Karjalainen A, Shoebridge S, Krunic M et al (2020) TYK2 in tumor immunosurveillance. Cancers 12(1):E150. https://doi.org/10.3390/cancers12010150

    Article  PubMed  Google Scholar 

  19. Abouelasrar Salama S, Lavie M, De Buck M et al (2019) Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine Growth Factor Rev 50:29–42. https://doi.org/10.1016/j.cytogfr.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Ferreiro I, Joaquin M, Islam A et al (2010) Whole genome analysis of p38 SAPK-mediated gene expression upon stress. BMC Genom 11:144. https://doi.org/10.1186/1471-2164-11-144)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant numbers: BR05236330, AP05130957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhan S. Turmagambetova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: William G. Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turmagambetova, A.S., Alexyuk, M.S., Bogoyavlenskiy, A.P. et al. Effect of the nanocapsulated adjuvant Sapomax on the expression of some immune response genes. Arch Virol 165, 1445–1451 (2020). https://doi.org/10.1007/s00705-020-04619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04619-1

Navigation