Skip to main content
Log in

Complete genome sequence of Xanthomonas phage RiverRider, a novel N4-like bacteriophage that infects the strawberry pathogen Xanthomonas fragariae

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Xanthomonas phage RiverRider is a novel N4-like bacteriophage and the first phage isolated from the plant pathogen Xanthomonas fragariae. Electron microscopy revealed a Podoviridae morphology consisting of isometric heads and short noncontractile tails. The complete genome of RiverRider is 76,355 bp in length, with 90 open reading frames and seven tRNAs. The genome is characteristic of N4-like bacteriophages in both content and organization, having predicted proteins characterized into the functional groups of transcription, DNA metabolism, DNA replication, lysis, lysis inhibition, structure and DNA packaging. Amino acid sequence comparisons for proteins in these categories showed highest similarities to well-characterized N4-like bacteriophages isolated from Achromobacter xylosoxidans and Erwinia amylovora. However, the tail fiber proteins of RiverRider are clearly distinct from those of other N4-like phages. RiverRider was able to infect seven different strains of X. fragariae and none of the other species of Xanthomonas tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maas JL (1998) Compendium of strawberry diseases, 2nd edn. APS Press, St. Paul

    Book  Google Scholar 

  2. Roberts PD, Jones JB, Chandler CK, Stall RE, Berger RD (1996) Survival of Xanthomonas fragariae on strawberry in summer nurseries in Florida detected by specific primers and nested polymerase chain reaction. Plant Dis 80:1283–1288

    Article  CAS  Google Scholar 

  3. Gigot C, Turechek WW, McRoberts N (2017) Analysis of the spatial pattern of strawberry angular leaf spot in California nursery production. Phytopathol 107:1243–1255

    Google Scholar 

  4. Wang H, McTavish C, Turechek WW (2018) Colonization and movement of Xanthomonas fragariae in strawberry tissues. Phytopathol 108:681–690

    Article  CAS  Google Scholar 

  5. Holtappels D, Lavigne R, Huys I, Wagemans J (2019) Protection of phage applications in crop production: a patent landscape. Viruses 11(3):277

    Article  Google Scholar 

  6. Lorenz L, Lins B, Barrett J et al (2013) Genomic characterization of six novel Bacillus pumilus bacteriophages. Virology 444:374–383

    Article  CAS  Google Scholar 

  7. Li S, Fan H, An X et al (2014) Scrutinizing virus genome termini by high-throughput sequencing. PLoS ONE 9:e85806

    Article  Google Scholar 

  8. Dreiseikelmann B, Bunk B, Spröer C et al (2017) Characterization and genome comparisons of three Achromobacter phages of the family Siphoviridae. Arch Virol 162(8):2191–2201

    Article  CAS  Google Scholar 

  9. Garneau JR, Depardieu F, Fortier LC et al (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7:8292

    Article  Google Scholar 

  10. Delcher AL, Harmon D, Kasif S et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  CAS  Google Scholar 

  11. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454

    Article  CAS  Google Scholar 

  12. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  13. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  Google Scholar 

  14. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16

    Article  CAS  Google Scholar 

  15. Lowe TM, Chan PP (2016) tRNAscan-SE on-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57

    Article  CAS  Google Scholar 

  16. Wittmann J, Klumpp J, Moreno Switt AI et al (2015) Taxonomic reassessment of N4-like viruses using comparative genomics and proteomics suggests a new subfamily- “Enquartavirinae”. Arch Virol 160(12):3053–3062

    Article  CAS  Google Scholar 

  17. Chan JZ-M, Millard AD, Mann NH et al (2014) Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes. Front Microbiol 5:506

    PubMed  PubMed Central  Google Scholar 

  18. Zivin R, Zehring W, Rothman-Denes LB (1981) Transcriptional map of bacteriophage N4: location and polarity of N4 RNAs. J Mol Biol 152:335–356

    Article  CAS  Google Scholar 

  19. Falco SC, Laan KV, Rothman-Denes LB (1977) Virion-associated RNA polymerase required for bacteriophage N4 development. P Natl Acad Sci USA 74:520–523

    Article  CAS  Google Scholar 

  20. Falco SC, Zehring W, Rothman-Denes LB (1980) DNA-dependent RNA polymerase from bacteriophage N4 virions. Purification and characterization. J Biol Chem 255:4339–4347

    CAS  PubMed  Google Scholar 

  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  22. Young R, Bläsi U (1995) Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev 17:191–205

    Article  CAS  Google Scholar 

  23. Stojković EA, Rothman-Denes LB (2007) Coliphage N4 N-acetylmuramidase defines a new family of murein hydrolases. J Mol Biol 366:406–419

    Article  Google Scholar 

  24. Kulikov E, Kropinski AM, Golomidova A et al (2012) Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology 426:93–99

    Article  CAS  Google Scholar 

  25. Ahern SJ, Das M, Bhowmick TS et al (2014) Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J Bacteriol 196:459–471

    Article  Google Scholar 

Download references

Funding

Financial support was provided in part by The Banack Family Partnership Endowed Teaching Chair in Agriculture, to T.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom D’Elia.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Deiulio, A., Holland, C. et al. Complete genome sequence of Xanthomonas phage RiverRider, a novel N4-like bacteriophage that infects the strawberry pathogen Xanthomonas fragariae. Arch Virol 165, 1481–1484 (2020). https://doi.org/10.1007/s00705-020-04614-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04614-6

Navigation