Skip to main content

Advertisement

Log in

The index of ideality of correlation and the variety of molecular rings as a base to improve model of HIV-1 protease inhibitors activity

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Computational prediction of HIV-1 protease inhibitor via quantitative structure–activity relationships (QSARs) is a popular study in the field of computational chemistry. The aim of the present study was building up of QSAR models for anti-HIV activity by means of the CORAL software (http://www.insilico.eu/coral). Applying of correlation weights for five and six-member molecular rings as components of the target function in the Monte Carlo optimization that is aimed to build up correlation between activity of HIV-1 protease inhibitors expressed as pIC50 = lg[1/(IC50 × 109)] and optimal descriptor improves the predictive potential. Simplified molecular input-line entry system (SMILES) is used as the representation of the molecular structure of HIV-1 protease inhibitors for the QSAR analysis. New criterion of predictive potential so-called index of ideality of correlation (IIC) has been appllied to improve the model for HIV-1 protease inhibitors activity. High correlation coefficients were observed between the experimental and predicted anti-HIV activity. Applying of special ring code as component of the Monte Carlo calculation significantly improves the statistical quality of the model. Furthermore, applying of the IIC as component of the Monte Carlo optimization improves the predictive potential of the CORAL models. The presence of the rings and the quality of these are very important molecular features which are able to improve statistical quality of model for anti-HIV activity. In addition, the ability of IIC to improve predictive potential of a model has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Halder AK (2018). SAR QSAR Environ Res 29(11):911–933. https://doi.org/10.1080/1062936X.2018.1529702

    Article  CAS  PubMed  Google Scholar 

  2. Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2010). J Comput Chem 31(2):381–392. https://doi.org/10.1002/jcc.21333

    Article  CAS  PubMed  Google Scholar 

  3. Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J (2010). J Math Chem 48(4):959–987. https://doi.org/10.1007/s10910-010-9719-x

    Article  CAS  Google Scholar 

  4. Toropova AP, Toropov AA, Veselinović JB, Miljković FN, Veselinović AM (2014). Eur J Med Chem 77:298–305. https://doi.org/10.1016/j.ejmech.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Toropov AA, Toropova AP, Benfenati E, Dorne JL (2018). Chem Biol Interact 290:1–5. https://doi.org/10.1016/j.cbi.2018.04.030

    Article  CAS  PubMed  Google Scholar 

  6. Toropova AP, Toropov AA, Marzo M, Escher SE, Dorne JL, Georgiadis N, Benfenati E (2018). Food Chem Toxicol 112:544–550. https://doi.org/10.1016/j.fct.2017.03.060

    Article  CAS  PubMed  Google Scholar 

  7. Lv Z, Chu Y, Wang Y (2015). HIV AIDS (Auckl) 7:95–104. https://doi.org/10.2147/HIV.S79956

    Article  CAS  Google Scholar 

  8. Darnag R, Minaoui B, Fakir M (2017). Arab J Chem 10:S600–S608. https://doi.org/10.1016/j.arabjc.2012.10.021

    Article  CAS  Google Scholar 

  9. OECD (2006) Report on the regulatory uses and applications in OECD member countries of (quantitative) structure-activity relationship [(Q)SAR] models in the assessment of new and existing chemicals. OECD Pap 6

  10. Hdoufane I, Stoycheva J, Tadjer A, Villemin D, Najdoska-Bogdanov M, Bogdanov J, Cherqaoui D (2019). J Mol Struct 1193:429–443. https://doi.org/10.1016/j.molstruc.2019.05.056

    Article  CAS  Google Scholar 

  11. Muthukumaran P, Rajiniraja M (2019). J Theor Biol 469:18–24. https://doi.org/10.1016/j.jtbi.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  12. Barzegar A, Zamani-Gharehchamani E, Kadkhodaie-Ilkhchi A (2017). Future Med Chem 9(11):1175–1191. https://doi.org/10.4155/fmc-2017-0040

    Article  CAS  PubMed  Google Scholar 

  13. Sapre NS, Jain N, Gupta S, Sapre N (2013). RSC Adv 3(26):10442–10451. https://doi.org/10.1039/C3RA40685G

    Article  CAS  Google Scholar 

  14. Fernández M, Caballero J (2006). Bioorg Med Chem 14(1):280–294. https://doi.org/10.1016/j.bmc.2005.08.022

    Article  CAS  PubMed  Google Scholar 

  15. Sapre NS, Gupta S, Pancholi N, Sapre N (2009). J Comput Chem 30(6):922–933. https://doi.org/10.1002/jcc.21114

    Article  CAS  PubMed  Google Scholar 

  16. Wei Y, Li W, Du T, Hong Z, Lin J (2019). Int J Mol Sci 20(14):3572. https://doi.org/10.3390/ijms20143572

    Article  CAS  PubMed Central  Google Scholar 

  17. Hdoufane I, Bjij I, Soliman M, Tadjer A, Villemin D, Bogdanov J, Cherqaoui D (2018). Pharmaceuticals 11(3):69. https://doi.org/10.3390/ph11030069

    Article  CAS  PubMed Central  Google Scholar 

  18. Shiri F, Pirhadi S, Rahmani A (2018). J Recept Sig Transd 38(1):37–47. https://doi.org/10.1080/10799893.2017.1414844

    Article  CAS  Google Scholar 

  19. Bhargava S, Adhikari N, Amin SA, Das K, Gayen S, Jha T (2017). SAR QSAR Environ Res 28(12):973–990. https://doi.org/10.1080/1062936X.2017.1388281

    Article  CAS  PubMed  Google Scholar 

  20. Putz MV, Dudas NA (2013). Molecules 18(8):9061–9116. https://doi.org/10.3390/molecules18089061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Z, Lin X, Madura JD (2006). Infect Disord-Drug Targets 6(4):391–413. https://doi.org/10.2174/187152606779025833

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z, Madura JD (2004). J Chem Inf Comput Sci 44(6):2167–2178. https://doi.org/10.1021/ci049893v

    Article  CAS  PubMed  Google Scholar 

  23. Toropov AA, Toropova AP, Marzo M, Dorne JL, Georgiadis N, Benfenati E (2017). Environ Toxicol Pharmcol 53:158–163. https://doi.org/10.1016/j.etap.2017.05.011

    Article  CAS  Google Scholar 

  24. Toropov AA, Toropova AP (2018) In: Bidoia E, Montagnolli R (eds) Toxicity and biodegradation testing. Methods in Pharmacology and Toxicology. Humana Press, New York, NY, pp 147–183. https://doi.org/10.1007/978-1-4939-7425-2_8

    Chapter  Google Scholar 

  25. Toropov AA, Toropova AP, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012). Anti Cancer Agents Med Chem 12(7):807–817. https://doi.org/10.2174/187152012802650255

    Article  CAS  Google Scholar 

  26. Velázquez-Libera JL, Caballero J, Toropova AP, Toropov AA (2019). Chemometr Intell Lab Syst 184:14–21. https://doi.org/10.1016/j.chemolab.2018.11.008

    Article  CAS  Google Scholar 

  27. Toropov AA, Toropova AP, Benfenati E, Salmona M (2018). Toxicol Mech Methods 28(5):321–327. https://doi.org/10.1080/15376516.2017.1422579

    Article  CAS  PubMed  Google Scholar 

  28. Toropov AA, Toropova AP (2017). Mutat Res Genet Toxicol Environ Mutagen 819:31–37. https://doi.org/10.1016/j.mrgentox.2017.05.008

    Article  CAS  Google Scholar 

  29. Toropova AP, Toropov AA (2017). Sci Total Environ 586:466–472. https://doi.org/10.1016/j.scitotenv.2017.01.198

    Article  CAS  PubMed  Google Scholar 

  30. Kumar P, Kumar A, Sindhu J (2019). SAR QSAR Environ Res 30(2):63–80. https://doi.org/10.1080/1062936X.2018.1564067

    Article  CAS  PubMed  Google Scholar 

  31. Ahmadi S (2020). Chemosphere 242:125192. https://doi.org/10.1016/j.chemosphere.2019.125192

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the contribution of the project LIFE-CONCERT contract (LIFE17 GIE/IT/000461) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Authors have done equivalent contributions to this work.

Corresponding author

Correspondence to Alla P. Toropova.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropov, A.A., Toropova, A.P., Carnesecchi, E. et al. The index of ideality of correlation and the variety of molecular rings as a base to improve model of HIV-1 protease inhibitors activity. Struct Chem 31, 1441–1448 (2020). https://doi.org/10.1007/s11224-020-01525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01525-9

Keywords

Navigation