Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polyploidy in liver development, homeostasis and disease

Abstract

Polyploidy (or whole-genome duplication) is the condition of having more than two basic sets of chromosomes. Polyploidization is well tolerated in many species and can lead to specific biological functions. In mammals, programmed polyploidization takes place during development in certain tissues, such as the heart and placenta, and is considered a feature of differentiation. However, unscheduled polyploidization can cause genomic instability and has been observed in pathological conditions, such as cancer. Polyploidy of the liver parenchyma was first described more than 100 years ago. The liver is one of the few mammalian organs that display changes in polyploidy during homeostasis, regeneration and in response to damage. In the human liver, approximately 30% of hepatocytes are polyploid. The polyploidy of hepatocytes results from both nuclear polyploidy (an increase in the amount of DNA per nucleus) and cellular polyploidy (an increase in the number of nuclei per cell). In this Review, we discuss the regulation of polyploidy in liver development and pathophysiology. We also provide an overview of current knowledge about the mechanisms of hepatocyte polyploidization, its biological importance and the fate of polyploid hepatocytes during liver tumorigenesis.

Key points

  • Polyploidy, a condition in which cells contain more than two sets of homologous chromosomes, is a well-known feature of mammalian hepatocytes.

  • Polyploidy is defined on the basis of the DNA content of each nucleus (nuclear ploidy; for example, 2n, 4n or 8n) and the number of nuclei per cell (cellular ploidy).

  • The adult liver contains a heterogeneous mixture of diploid and polyploid hepatocytes.

  • The liver is one of the few mammalian organs that display changes in ploidy during normal homeostasis, during regeneration and in response to damage.

  • The polyploid state could provide protection from tumorigenesis by providing extra copies of tumour suppressor genes.

  • Amplification of nuclear ploidy within liver tumours is associated with a poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of polyploidy.
Fig. 2: Molecular mechanisms that lead to the polyploid state.
Fig. 3: Polyploidization during postnatal liver growth.
Fig. 4: Genesis of mononucleate polyploid hepatocytes in physiopathological contexts.
Fig. 5: The polyploid state: gatekeeper or driver of liver tumorigenesis?

Similar content being viewed by others

References

  1. O’Brien, S. J., Menninger, J. C. & Nash, W. G (eds). Atlas of mammalian chromosomes. (Wiley, Hoboken, 2006).

  2. Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007).

    CAS  PubMed  Google Scholar 

  3. Weaver, B. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin. Cell Biol. 18, 658–667 (2006).

    CAS  PubMed  Google Scholar 

  4. Gallagher, J. P., Grover, C. E., Hu, G. & Wendel, J. F. Insights into the ecology and evolution of polyploid plants through network analysis. Mol. Ecol. 25, 2644–2660 (2016).

    PubMed  Google Scholar 

  5. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLOS Biol. 3, e314 (2005).

    PubMed  PubMed Central  Google Scholar 

  6. Soltis, D. E., Visger, C. J. & Soltis, P. S. The polyploidy revolution then … and now: Stebbins revisited. Am. J. Bot. 101, 1057–1078 (2014).

    PubMed  Google Scholar 

  7. Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    PubMed  Google Scholar 

  8. Leitch, A. R. & Leitch, I. J. Genomic plasticity and the diversity of polyploid plants. Science 320, 481–483 (2008).

    CAS  PubMed  Google Scholar 

  9. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000).

    CAS  PubMed  Google Scholar 

  10. Ramsey, J. & Schemske, D. W. Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501 (1998).

    Google Scholar 

  11. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    CAS  PubMed  Google Scholar 

  12. Soltis, D. E., Bell, C. D., Kim, S. & Soltis, P. S. Origin and early evolution of angiosperms. Ann. N. Y. Acad. Sci. 1133, 3–25 (2008).

    CAS  PubMed  Google Scholar 

  13. Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant. Biol. 30, 159–165 (2016).

    PubMed  Google Scholar 

  14. Mable, B., Alexandrou, M. A. & Taylor, M. I. Genome duplication in amphibians and fish: an extended synthesis. J. Zool. 284, 151–182 (2011).

    Google Scholar 

  15. Guc-Scekic, M., Milasin, J., Stevanovic, M., Stojanov, L. J. & Djordjevic, M. Tetraploidy in a 26-month-old girl (cytogenetic and molecular studies). Clin. Genet. 61, 62–65 (2002).

    CAS  PubMed  Google Scholar 

  16. Jacobs, P. A., Szulman, A. E., Funkhouser, J., Matsuura, J. S. & Wilson, C. C. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann. Hum. Genet. 46, 223–231 (1982).

    CAS  PubMed  Google Scholar 

  17. Wertheim, B., Beukeboom, L. W. & van de Zande, L. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet. Genome Res. 140, 256–269 (2013).

    CAS  PubMed  Google Scholar 

  18. Gallardo, M. H., Bickham, J. W., Honeycutt, R. L., Ojeda, R. A. & Kohler, N. Discovery of tetraploidy in a mammal. Nature 401, 341 (1999).

    CAS  PubMed  Google Scholar 

  19. Anzi, S. et al. Postnatal exocrine pancreas growth by cellular hypertrophy correlates with a shorter lifespan in mammals. Dev. Cell 45, 726–737.e3 (2018).

    CAS  PubMed  Google Scholar 

  20. Oates, P. S. & Morgan, R. G. Changes in pancreatic acinar cell nuclear number and DNA content during aging in the rat. Am. J. Anat. 177, 547–554 (1986).

    CAS  PubMed  Google Scholar 

  21. Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    CAS  PubMed  Google Scholar 

  22. Pandit, S. K., Westendorp, B. & de Bruin, A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol. 23, 556–566 (2013).

    CAS  PubMed  Google Scholar 

  23. Ravid, K., Lu, J., Zimmet, J. M. & Jones, M. R. Roads to polyploidy: the megakaryocyte example. J. Cell Physiol. 190, 7–20 (2002).

    CAS  PubMed  Google Scholar 

  24. Gjelsvik, K. J., Besen-McNally, R. & Losick, V. P. Solving the polyploid mystery in health and disease. Trends Genet. 35, 6–14 (2019).

    CAS  PubMed  Google Scholar 

  25. Ovrebo, J. I. & Edgar, B. A. Polyploidy in tissue homeostasis and regeneration. Development 145, 1–16 (2018).

    Google Scholar 

  26. Cao, J. et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell 42, 600–615.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lazzeri, E. et al. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat. Commun. 9, 1344 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Miyaoka, Y. et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22, 1166–1175 (2012).

    CAS  PubMed  Google Scholar 

  29. Auer, G. U., Backdahl, M., Forsslund, G. M. & Askensten, U. G. Ploidy levels in nonneoplastic and neoplastic thyroid cells. Anal. Quant. Cytol. Histol. 7, 97–106 (1985).

    CAS  PubMed  Google Scholar 

  30. Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    CAS  PubMed  Google Scholar 

  31. Gentric, G. et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J. Clin. Invest. 125, 981–992 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Hixon, M. L. & Gualberto, A. Vascular smooth muscle polyploidization—from mitotic checkpoints to hypertension. Cell Cycle 2, 105–110 (2003).

    CAS  PubMed  Google Scholar 

  33. Vliegen, H. W., Eulderink, F., Bruschke, A. V., van der Laarse, A. & Cornelisse, C. J. Polyploidy of myocyte nuclei in pressure overloaded human hearts: a flow cytometric study in left and right ventricular myocardium. Am. J. Cardiovasc. Pathol. 5, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  34. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    CAS  PubMed  Google Scholar 

  35. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS  PubMed  Google Scholar 

  36. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yanagimachi, R. & Noda, Y. D. Physiological changes in the postnuclear cap region of mammalian spermatozoa: a necessary preliminary to the membrane fusion between sperm and egg cells. J. Ultrastruct. Res. 31, 486–493 (1970).

    CAS  PubMed  Google Scholar 

  38. Huppertz, B., Frank, H. G., Kingdom, J. C., Reister, F. & Kaufmann, P. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem. Cell Biol. 110, 495–508 (1998).

    CAS  PubMed  Google Scholar 

  39. Loutit, J. F. & Nisbet, N. W. The origin of osteoclasts. Immunobiology 161, 193–203 (1982).

    CAS  PubMed  Google Scholar 

  40. Taylor, M. V. Muscle differentiation: how two cells become one. Curr. Biol. 12, R224-R228 (2002).

    CAS  PubMed  Google Scholar 

  41. Abmayr, S. M. & Pavlath, G. K. Myoblast fusion: lessons from flies and mice. Development 139, 641–656 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, J. H., Jin, P., Duan, R. & Chen, E. H. Mechanisms of myoblast fusion during muscle development. Curr. Opin. Genet. Dev. 32, 162–170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lluis, F. & Cosma, M. P. Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J. Cell Physiol. 223, 6–13 (2010).

    CAS  PubMed  Google Scholar 

  44. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    CAS  PubMed  Google Scholar 

  45. Rizvi, A. Z. et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc. Natl Acad. Sci. USA 103, 6321–6325 (2006).

    CAS  PubMed  Google Scholar 

  46. Sanges, D. et al. Wnt/β-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. Cell Rep. 4, 271–286 (2013).

    CAS  PubMed  Google Scholar 

  47. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    CAS  PubMed  Google Scholar 

  48. Weimann, J. M., Johansson, C. B., Trejo, A. & Blau, H. M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959–966 (2003).

    CAS  PubMed  Google Scholar 

  49. Duelli, D. & Lazebnik, Y. Cell-to-cell fusion as a link between viruses and cancer. Nat. Rev. Cancer 7, 968–976 (2007).

    CAS  PubMed  Google Scholar 

  50. Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550–560 (2010).

    CAS  PubMed  Google Scholar 

  51. Gao, P. & Zheng, J. High-risk HPV E5-induced cell fusion: a critical initiating event in the early stage of HPV-associated cervical cancer. Virol. J. 7, 238 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Hu, L. et al. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion. Virology 384, 125–134 (2009).

    CAS  PubMed  Google Scholar 

  53. Olaharski, A. J. et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27, 337–343 (2006).

    CAS  PubMed  Google Scholar 

  54. Olaharski, A. J. & Eastmond, D. A. Elevated levels of tetraploid cervical cells in human papillomavirus-positive Papanicolaou smears diagnosed as atypical squamous cells of undetermined significance. Cancer 102, 192–199 (2004).

    PubMed  Google Scholar 

  55. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    CAS  PubMed  Google Scholar 

  56. Edgar, B. A. & Orr-Weaver, T. L. Endoreplication cell cycles: more for less. Cell 105, 297–306 (2001).

    CAS  PubMed  Google Scholar 

  57. Fox, D. T. & Duronio, R. J. Endoreplication and polyploidy: insights into development and disease. Development 140, 3–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, H. O., Davidson, J. M. & Duronio, R. J. Endoreplication: polyploidy with purpose. Genes. Dev. 23, 2461–2477 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Orr-Weaver, T. L. When bigger is better: the role of polyploidy in organogenesis. Trends Genet. 31, 307–315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Edgar, B. A., Zielke, N. & Gutierrez, C. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat. Rev. Mol. Cell Biol. 15, 197–210 (2014).

    PubMed  Google Scholar 

  61. Hu, D. & Cross, J. C. Development and function of trophoblast giant cells in the rodent placenta. Int. J. Dev. Biol. 54, 341–354 (2010).

    CAS  PubMed  Google Scholar 

  62. Ogawa, H. et al. Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos. J. Reprod. Dev. 62, 51–58 (2016).

    CAS  PubMed  Google Scholar 

  63. Ullah, Z., Kohn, M. J., Yagi, R., Vassilev, L. T. & DePamphilis, M. L. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes. Dev. 22, 3024–3036 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, H. Z. et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat. Cell Biol. 14, 1192–1202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ouseph, M. M. et al. Atypical E2F repressors and activators coordinate placental development. Dev. Cell 22, 849–862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shu, Z., Row, S. & Deng, W. M. Endoreplication: the good, the bad, and the ugly. Trends Cell Biol. 28, 465–474 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Adachi, M. & Brenner, D. A. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47, 677–685 (2008).

    CAS  PubMed  Google Scholar 

  68. Radziejwoski, A. et al. Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO J. 30, 355–363 (2011).

    CAS  PubMed  Google Scholar 

  69. Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21, 765–776 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Davoli, T., Denchi, E. L. & de Lange, T. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Balachandran, R. S. & Kipreos, E. T. Addressing a weakness of anticancer therapy with mitosis inhibitors: mitotic slippage. Mol. Cell Oncol. 4, e1277293 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Mishima, M., Pavicic, V., Gruneberg, U., Nigg, E. A. & Glotzer, M. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004).

    CAS  PubMed  Google Scholar 

  73. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    CAS  PubMed  Google Scholar 

  74. Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637–651 (2004).

    CAS  PubMed  Google Scholar 

  75. Sinha, D., Duijf, P. H. G. & Khanna, K. K. Mitotic slippage: an old tale with a new twist. Cell Cycle 18, 7–15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, J., Kim, J. A., Margolis, R. L. & Fotedar, R. Substrate degradation by the anaphase promoting complex occurs during mitotic slippage. Cell Cycle 9, 1792–1801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Balachandran, R. S. et al. The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage. J. Cell Biol. 215, 151–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Coward, J. & Harding, A. Size does matter: why polyploid tumor cells are critical drug targets in the war on cancer. Front. Oncol. 4, 123 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Dikovskaya, D. et al. Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J. Cell Biol. 176, 183–195 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  82. Caldwell, C. M. & Kaplan, K. B. The role of APC in mitosis and in chromosome instability. Adv. Exp. Med. Biol. 656, 51–64 (2009).

    CAS  PubMed  Google Scholar 

  83. D’Avino, P. P., Giansanti, M. G. & Petronczki, M. Cytokinesis in animal cells. Cold Spring Harb. Perspect. Biol. 7, a015834 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Celton-Morizur, S. & Desdouets, C. Polyploidization of liver cells. Adv. Exp. Med. Biol. 676, 123–135 (2010).

    CAS  PubMed  Google Scholar 

  85. Fortier, M., Celton-Morizur, S. & Desdouets, C. Incomplete cytokinesis/binucleation in mammals: the powerful system of hepatocytes. Methods Cell Biol. 137, 119–142 (2017).

    CAS  PubMed  Google Scholar 

  86. Li, F., Wang, X., Bunger, P. C. & Gerdes, A. M. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin–myosin contractile ring. J. Mol. Cell Cardiol. 29, 1541–1551 (1997).

    CAS  PubMed  Google Scholar 

  87. Zimmet, J. & Ravid, K. Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp. Hematol. 28, 3–16 (2000).

    CAS  PubMed  Google Scholar 

  88. Guidotti, J. E. et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J. Biol. Chem. 278, 19095–19101 (2003).

    CAS  PubMed  Google Scholar 

  89. Li, F., Wang, X., Capasso, J. M. & Gerdes, A. M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28, 1737–1746 (1996).

    CAS  PubMed  Google Scholar 

  90. Soonpaa, M. H. et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183-H2189 (1996).

    CAS  PubMed  Google Scholar 

  91. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    CAS  PubMed  Google Scholar 

  92. Yuan, X. & Braun, T. Multimodal regulation of cardiac myocyte proliferation. Circ. Res. 121, 293–309 (2017).

    CAS  PubMed  Google Scholar 

  93. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    CAS  PubMed  Google Scholar 

  94. Liu, Z., Yue, S., Chen, X., Kubin, T. & Braun, T. Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ. Res. 106, 1498–1506 (2010).

    CAS  PubMed  Google Scholar 

  95. Engel, F. B., Schebesta, M. & Keating, M. T. Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell Cardiol. 41, 601–612 (2006).

    CAS  PubMed  Google Scholar 

  96. Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521–544 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Storchova, Z. & Kuffer, C. The consequences of tetraploidy and aneuploidy. J. Cell Sci. 121, 3859–3866 (2008).

    CAS  PubMed  Google Scholar 

  98. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5, 45–54 (2004).

    CAS  PubMed  Google Scholar 

  99. Tormos, A. M., Talens-Visconti, R. & Sastre, J. Regulation of cytokinesis and its clinical significance. Crit. Rev. Clin. Lab. Sci. 52, 159–167 (2015).

    CAS  PubMed  Google Scholar 

  100. Lacroix, B. & Maddox, A. S. Cytokinesis, ploidy and aneuploidy. J. Pathol. 226, 338–351 (2012).

    CAS  PubMed  Google Scholar 

  101. Mullins, J. M. & Biesele, J. J. Terminal phase of cytokinesis in D-98s cells. J. Cell Biol. 73, 672–684 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shi, Q. & King, R. W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038–1042 (2005).

    CAS  PubMed  Google Scholar 

  103. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    CAS  PubMed  Google Scholar 

  104. Benhamouche, S. et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell 10, 759–770 (2006).

    CAS  PubMed  Google Scholar 

  105. Gebhardt, R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53, 275–354 (1992).

    CAS  PubMed  Google Scholar 

  106. Jungermann, K. & Kietzmann, T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu. Rev. Nutr. 16, 179–203 (1996).

    CAS  PubMed  Google Scholar 

  107. Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).

    PubMed  Google Scholar 

  108. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Duncan, A. W. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin. Cell Dev. Biol. 24, 347–356 (2013).

    PubMed  Google Scholar 

  110. Gentric, G. & Desdouets, C. Polyploidization in liver tissue. Am. J. Pathol. 184, 322–331 (2014).

    CAS  PubMed  Google Scholar 

  111. Brodsky, W. Y. & Uryvaeva, I. V. Cell polyploidy: its relation to tissue growth and function. Int. Rev. Cytol. 50, 275–332 (1977).

    CAS  PubMed  Google Scholar 

  112. Carriere, R. Polyploid cell reproduction in normal adult rat liver. Exp. Cell. Res. 46, 533–540 (1967).

    CAS  PubMed  Google Scholar 

  113. Nadal, C. & Zajdela, F. [Polyploidy in the rat liver. II. The role of the hypophysis and protein deficiency]. Exp. Cell Res. 42, 117–129 (1966).

    CAS  PubMed  Google Scholar 

  114. Nadal, C. & Zajdela, F. Hepatic polyploidy in the rat. IV. Experimental changes in the nucleolar volume of liver cells and their mechanisms of regulation. Exp. Cell Res. 48, 518–528 (1967).

    CAS  PubMed  Google Scholar 

  115. Anatskaya, O. V., Vinogradov, A. E. & Kudryavtsev, B. N. Hepatocyte polyploidy and metabolism/life-history traits: hypotheses testing. J. Theor. Biol. 168, 191–199 (1994).

    CAS  PubMed  Google Scholar 

  116. Duncan, A. W. et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467, 707–710 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gandillet, A. et al. Hepatocyte ploidy in normal young rat. Comp. Biochem. Physiol. A Mol. Integr. Physiol 134, 665–673 (2003).

    PubMed  Google Scholar 

  118. Pandit, S. K. et al. E2F8 is essential for polyploidization in mammalian cells. Nat. Cell Biol. 14, 1181–1191 (2012).

    CAS  PubMed  Google Scholar 

  119. Bou-Nader, M. et al. Polyploidy spectrum: a new marker in HCC classification. Gut 69, 355–364 (2020).

    PubMed  Google Scholar 

  120. Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25–28 (2012).

    PubMed  Google Scholar 

  121. Kudryavtsev, B. N., Kudryavtseva, M. V., Sakuta, G. A. & Stein, G. I. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol 64, 387–393 (1993).

    CAS  PubMed  Google Scholar 

  122. Toyoda, H. et al. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis. Gut 54, 297–302 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Toyoda, H., Kumada, T., Bregerie, O., Brechot, C. & Desdouets, C. Conserved balance of hepatocyte nuclear DNA content in mononuclear and binuclear hepatocyte populations during the course of chronic viral hepatitis. World J. Gastroenterol. 12, 4546–4548 (2006).

    PubMed  PubMed Central  Google Scholar 

  124. Deschenes, J., Valet, J. P. & Marceau, N. The relationship between cell volume, ploidy, and functional activity in differentiating hepatocytes. Cell Biophys. 3, 321–334 (1981).

    CAS  PubMed  Google Scholar 

  125. Epstein, C. J. Cell size, nuclear content and the development of polyploidy in the mammalian liver. Proc. Natl Acad. Sci. USA 57, 327–334 (1967).

    CAS  PubMed  Google Scholar 

  126. Martin, N. C. et al. Functional analysis of mouse hepatocytes differing in DNA content: volume, receptor expression, and effect of IFNγ. J. Cell Physiol. 191, 138–144 (2002).

    CAS  PubMed  Google Scholar 

  127. Watanabe, T. & Tanaka, Y. Age-related alterations in the size of human hepatocytes. A study of mononuclear and binucleate cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol 39, 9–20 (1982).

    CAS  PubMed  Google Scholar 

  128. Morales-Navarrete, H. et al. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture. eLife 4, 1–29 (2015).

    Google Scholar 

  129. Kato, N. & Lam, E. Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J. Cell Sci. 116, 2195–2201 (2003).

    CAS  PubMed  Google Scholar 

  130. Gupta, S. Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 10, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  131. Viola-Magni, M. P. Synthesis and turnover of DNA in hepatocytes of neonatal rats. J. Microsc. 96, 191–203 (1972).

    CAS  PubMed  Google Scholar 

  132. Hsu, S. H. et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 64, 599–615 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Margall-Ducos, G., Morizur-Celton, S., Couton, D., Bregerie, O. & Desdouets, C. Liver tetraploidization is controlled by a new process of incomplete cytokinesis. J. Cell Sci. 120, 3633–3639 (2007).

    CAS  PubMed  Google Scholar 

  134. Wheatley, D. N. Binucleation in mammalian liver. Studies on the control of cytokinesis in vivo. Exp. Cell Res. 74, 455–465 (1972).

    CAS  PubMed  Google Scholar 

  135. Girard, J., Ferre, P., Pegorier, J. P. & Duee, P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling–weaning transition. Physiol. Rev. 72, 507–562 (1992).

    CAS  PubMed  Google Scholar 

  136. Celton-Morizur, S., Merlen, G., Couton, D. & Desdouets, C. Polyploidy and liver proliferation: central role of insulin signaling. Cell Cycle 9, 460–466 (2010).

    CAS  PubMed  Google Scholar 

  137. Celton-Morizur, S., Merlen, G., Couton, D., Margall-Ducos, G. & Desdouets, C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J. Clin. Invest. 119, 1880–1887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  139. Wong, J. V., Dong, P., Nevins, J. R., Mathey-Prevot, B. & You, L. Network calisthenics: control of E2F dynamics in cell cycle entry. Cell Cycle 10, 3086–3094 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wilkinson, P. D. et al. The polyploid state restricts hepatocyte proliferation and liver regeneration. Hepatology 69, 1242–1258 (2018).

    Google Scholar 

  141. del Pozo, J. C., Diaz-Trivino, S., Cisneros, N. & Gutierrez, C. The balance between cell division and endoreplication depends on E2FC–DPB, transcription factors regulated by the ubiquitin–SCFSKP2A pathway in Arabidopsis. Plant Cell 18, 2224–2235 (2006).

    PubMed  PubMed Central  Google Scholar 

  142. Shibutani, S. T. et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 15, 890–900 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zielke, N. et al. Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature 480, 123–127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Qi, Q. R. et al. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization. Cell Cycle 14, 1842–1858 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Diril, M. K. et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl Acad. Sci. USA 109, 3826–3831 (2012).

    CAS  PubMed  Google Scholar 

  146. Kurinna, S. et al. p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology 57, 2004–2013 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Sheahan, S., Bellamy, C. O., Treanor, L., Harrison, D. J. & Prost, S. Additive effect of p53, p21 and Rb deletion in triple knockout primary hepatocytes. Oncogene 23, 1489–1497 (2004).

    CAS  PubMed  Google Scholar 

  148. Wu, H. et al. Targeted in vivo expression of the cyclin dependent kinase inhibitor p21 halts hepatocyte cell cycle progression, postnatal liver development and regeneration. Genes Dev. 10, 245–260 (1996).

    CAS  PubMed  Google Scholar 

  149. Baena, E. et al. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver. Proc. Natl Acad. Sci. USA 102, 7286–7291 (2005).

    CAS  PubMed  Google Scholar 

  150. Nevzorova, Y. A. et al. Aberrant cell cycle progression and endoreplication in regenerating livers of mice that lack a single E-type cyclin. Gastroenterology 137, 691–703, 703.e1–6 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, D. et al. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice. Hepatology 58, 2109–2121 (2013).

    CAS  PubMed  Google Scholar 

  152. Kim, S. H. et al. Hepatocyte homeostasis for chromosome ploidization and liver function is regulated by Ssu72 protein phosphatase. Hepatology 63, 247–259 (2016).

    CAS  PubMed  Google Scholar 

  153. Zhang, S. et al. Hippo signaling suppresses cell ploidy and tumorigenesis through skp2. Cancer Cell 31, 669–684.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. De Santis Puzzonia, M. et al. TGFβ induces binucleation/polyploidization in hepatocytes through a Src-dependent cytokinesis failure. PLOS ONE 11, e0167158 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Mayhew, C. N. et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res. 65, 4568–4577 (2005).

    CAS  PubMed  Google Scholar 

  156. Magami, Y. et al. Cell proliferation and renewal of normal hepatocytes and bile duct cells in adult mouse liver. Liver 22, 419–425 (2002).

    PubMed  Google Scholar 

  157. Geschwind, I. I., Alfert, M. & Schooley, C. Liver regeneration and hepatic polyploidy in the hypophysectomized rat. Exp. Cell Res. 15, 232–235 (1958).

    CAS  PubMed  Google Scholar 

  158. Faktor, V. M. & Uryvaeva, I. V. [Progressive polyploidy in mouse liver following repeated hepatectomy]. Tsitologiia 17, 909–916 (1975).

    CAS  PubMed  Google Scholar 

  159. Gerlyng, P. et al. Binucleation and polyploidization patterns in developmental and regenerative rat liver growth. Cell Prolif. 26, 557–565 (1993).

    CAS  PubMed  Google Scholar 

  160. Sigal, S. H. et al. Partial hepatectomy-induced polyploidy attenuates hepatocyte replication and activates cell aging events. Am. J. Physiol. 276, G1260-G1272 (1999).

    CAS  PubMed  Google Scholar 

  161. Maillet, V. et al. LKB1 as a gatekeeper of hepatocyte proliferation and genomic integrity during liver regeneration. Cell Rep. 22, 1994–2005 (2018).

    CAS  PubMed  Google Scholar 

  162. Madra, S., Styles, J. & Smith, A. G. Perturbation of hepatocyte nuclear populations induced by iron and polychlorinated biphenyls in C57BL/10ScSn mice during carcinogenesis. Carcinogenesis 16, 719–727 (1995).

    CAS  PubMed  Google Scholar 

  163. Muramatsu, Y. et al. Increased polyploid incidence is associated with abnormal copper accumulation in the liver of LEC mutant rat. Res. Commun. Mol. Pathol. Pharmacol. 107, 129–136 (2000).

    CAS  PubMed  Google Scholar 

  164. Yamada, T. et al. Increased polyploidy, delayed mitosis and reduced protein phosphatase-1 activity associated with excess copper in the Long Evans Cinnamon rat. Res. Commun. Mol. Pathol. Pharmacol. 99, 283–304 (1998).

    CAS  PubMed  Google Scholar 

  165. Lazzerini Denchi, E., Celli, G. & de Lange, T. Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes. Dev. 20, 2648–2653 (2006).

    PubMed  PubMed Central  Google Scholar 

  166. Ahodantin, J. et al. Hepatitis B virus X protein promotes DNA damage propagation through disruption of liver polyploidization and enhances hepatocellular carcinoma initiation. Oncogene 38, 2645–2657 (2019).

    CAS  PubMed  Google Scholar 

  167. Gentric, G. & Desdouets, C. Liver polyploidy: Dr Jekyll or Mr Hide? Oncotarget 6, 8430–8431 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. Schmucker, D. L. Do hepatocytes age? Exp. Gerontol. 25, 403–412 (1990).

    CAS  PubMed  Google Scholar 

  169. Schmucker, D. L. Hepatocyte fine structure during maturation and senescence. J. Electron. Microsc. Tech. 14, 106–125 (1990).

    CAS  PubMed  Google Scholar 

  170. Asahina, K. et al. Multiplicative mononuclear small hepatocytes in adult rat liver: their isolation as a homogeneous population and localization to periportal zone. Biochem. Biophys. Res. Commun. 342, 1160–1167 (2006).

    CAS  PubMed  Google Scholar 

  171. Knouse, K. A., Lopez, K. E., Bachofner, M. & Amon, A. Chromosome segregation fidelity in epithelia requires tissue architecture. Cell 175, 200–211.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Overturf, K., Al-Dhalimy, M., Finegold, M. & Grompe, M. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am. J. Pathol. 155, 2135–2143 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ganem, N. J. et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833–848 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang, M. J., Chen, F., Lau, J. T. Y. & Hu, Y. P. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis. 8, e2805 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, M. J. et al. Reversal of hepatocyte senescence after continuous in vivo cell proliferation. Hepatology 60, 349–361 (2014).

    CAS  PubMed  Google Scholar 

  176. Schoenfelder, K. P. & Fox, D. T. The expanding implications of polyploidy. J. Cell Biol. 209, 485–491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Rios, A. C. et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat. Commun. 7, 11400 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Tanami, S. et al. Dynamic zonation of liver polyploidy. Cell Tissue Res. 368, 405–410 (2017).

    CAS  PubMed  Google Scholar 

  179. Coate, J. E. & Doyle, J. J. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol. Evol. 2, 534–546 (2010).

    PubMed  PubMed Central  Google Scholar 

  180. Miettinen, T. P. et al. Identification of transcriptional and metabolic programs related to mammalian cell size. Curr. Biol. 24, 598–608 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Lu, P. et al. Microarray analysis of gene expression of mouse hepatocytes of different ploidy. Mamm. Genome 18, 617–626 (2007).

    CAS  PubMed  Google Scholar 

  182. Kreutz, C. et al. Hepatocyte ploidy is a diversity factor for liver homeostasis. Front. Physiol. 8, 862 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Anatskaya, O. V. & Vinogradov, A. E. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 89, 70–80 (2007).

    CAS  PubMed  Google Scholar 

  184. Anatskaya, O. V. & Vinogradov, A. E. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Funct. Integr. Genomics 10, 433–446 (2010).

    CAS  PubMed  Google Scholar 

  185. Bahar Halpern, K. et al. Bursty gene expression in the intact mammalian liver. Mol. Cell 58, 147–156 (2015).

    CAS  PubMed  Google Scholar 

  186. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014).

    CAS  PubMed  Google Scholar 

  188. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Weier, J. F. et al. Human cytotrophoblasts acquire aneuploidies as they differentiate to an invasive phenotype. Dev. Biol. 279, 420–432 (2005).

    CAS  PubMed  Google Scholar 

  190. Westra, J. W. et al. Aneuploid mosaicism in the developing and adult cerebellar cortex. J. Comp. Neurol. 507, 1944–1951 (2008).

    PubMed  Google Scholar 

  191. Duncan, A. W. et al. Aneuploidy as a mechanism for stress-induced liver adaptation. J. Clin. Invest. 122, 3307–3315 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Matsumoto, T., Wakefield, L., Tarlow, B. D. & Grompe, M. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26, 34–47 (2019).

    PubMed  Google Scholar 

  193. Grompe, M. & al-Dhalimy, M. Rapid nonradioactive assay for the detection of the common French Canadian tyrosinemia type I mutation. Hum. Mutat. 5, 105 (1995).

    CAS  PubMed  Google Scholar 

  194. Wilkinson, P. D. et al. Polyploid hepatocytes facilitate adaptation and regeneration to chronic liver injury. Am. J. Pathol. 189, 1241–1255 (2019).

    PubMed  PubMed Central  Google Scholar 

  195. Losick, V. P., Fox, D. T. & Spradling, A. C. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 23, 2224–2232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Losick, V. P. Wound-induced polyploidy is required for tissue repair. Adv. Wound Care 5, 271–278 (2016).

    Google Scholar 

  197. Zhang, S. et al. The polyploid state plays a tumor-suppressive role in the liver. Dev. Cell 47, 390 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Sato, N. et al. Centrosome abnormalities in pancreatic ductal carcinoma. Clin. Cancer Res. 5, 963–970 (1999).

    CAS  PubMed  Google Scholar 

  199. Lothschutz, D. et al. Polyploidization and centrosome hyperamplification in inflammatory bronchi. Inflamm. Res. 51, 416–422 (2002).

    CAS  PubMed  Google Scholar 

  200. Hamada, S., Itoh, R. & Fujita, S. DNA distribution pattern of the so-called severe dysplasias and small carcinomas of the colon and rectum and its possible significance in the tumor progression. Cancer 61, 1555–1562 (1988).

    CAS  PubMed  Google Scholar 

  201. Montgomery, B. T. et al. Stage B prostate adenocarcinoma. Flow cytometric nuclear DNA ploidy analysis. Arch. Surg. 125, 327–331 (1990).

    CAS  PubMed  Google Scholar 

  202. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996).

    CAS  PubMed  Google Scholar 

  205. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    CAS  PubMed  Google Scholar 

  206. Kneissig, M., Bernhard, S. & Storchova, Z. Modelling chromosome structural and copy number changes to understand cancer genomes. Curr. Opin. Genet. Dev. 54, 25–32 (2019).

    CAS  PubMed  Google Scholar 

  207. Tanaka, K. et al. Tetraploidy in cancer and its possible link to aging. Cancer Sci. 109, 2632–2640 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Bloy, N. et al. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol. Rev. 280, 165–174 (2017).

    CAS  PubMed  Google Scholar 

  209. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    CAS  PubMed  Google Scholar 

  210. Acebes-Huerta, A. et al. Drug-induced hyperploidy stimulates an antitumor NK cell response mediated by NKG2D and DNAM-1 receptors. Oncoimmunology 5, e1074378 (2016).

    PubMed  Google Scholar 

  211. Aranda, F. et al. Immune effectors responsible for the elimination of hyperploid cancer cells. Oncoimmunology 7, e1463947 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Cosenza, M. R. & Kramer, A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res. 24, 105–126 (2016).

    CAS  PubMed  Google Scholar 

  213. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Wangsa, D. et al. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness. FASEB J. 32, 3502–3517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    CAS  PubMed  Google Scholar 

  216. Lv, L. et al. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11, 2864–2875 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhang, S., Lin, Y. H., Tarlow, B. & Zhu, H. The origins and functions of hepatic polyploidy. Cell Cycle 18, 1302–1315 (2019).

    PubMed  PubMed Central  Google Scholar 

  218. Austin, L. S., Kaushansky, A. & Kappe, S. H. Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy. Cell Microbiol. 16, 784–795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM), la Fondation pour la Recherche Médicale (Equipe FRM: EQU201903007824), the Institut National du Cancer (PRTK-2017, PLBIO18-107), the Agence Nationale de Recherche ANR (ANR-16-CE14), Fondation ARC (Association de Recherche sur le Cancer), Ligue Contre le Cancer (comité de Paris), the Cancéropôle Ile-de-France (Emergence 2015), The Association Française pour l’Etude du Foie (AFEF-SUBV 2017), EVA-Plan Cancer INSERM HTE and the SIRIC CARPEM. R.D. is a recipient of Fondation pour la Recherche Médicale (PhD grant). P.C. is a recipient of Plan Cancer INSERM (program « Soutien pour la formation à la recherche fondamentale et translationnelle en cancérologie »).

Author information

Authors and Affiliations

Authors

Contributions

R.D., M.S.-A. and P.C. wrote the article and researched data for the article. S.C.-M. wrote the article and made a substantial contribution to the discussion of content. C.D. wrote the article, researched data for the article, made a substantial contribution to the discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Chantal Desdouets.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks A. Duncan, S. Itzkovitz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donne, R., Saroul-Aïnama, M., Cordier, P. et al. Polyploidy in liver development, homeostasis and disease. Nat Rev Gastroenterol Hepatol 17, 391–405 (2020). https://doi.org/10.1038/s41575-020-0284-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-0284-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing