Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of human telomerase in homeostasis and disease

Abstract

Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Telomerase interacts with shelterin at telomeres.
Fig. 2
Fig. 3: Assembly and trafficking of telomerase within the cell.
Fig. 4: Regulation of telomerase activity at the telomere.

Similar content being viewed by others

References

  1. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 41, 301–334 (2008).

    Google Scholar 

  2. Lazzerini-Denchi, E. & Sfeir, A. Stop pulling my strings — what telomeres taught us about the DNA damage response. Nat. Rev. Mol. Cell Biol. 17, 364–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Grolimund, L. et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 4, 2848 (2013).

    PubMed  Google Scholar 

  4. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  PubMed  Google Scholar 

  5. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  PubMed  Google Scholar 

  6. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiba, K. et al. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 357, 1416–1420 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Romanov, S. R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    CAS  PubMed  Google Scholar 

  9. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    CAS  PubMed  Google Scholar 

  10. Weng, N. P., Levine, B. L., June, C. H. & Hodes, R. J. Regulated expression of telomerase activity in human T lymphocyte development and activation. J. Exp. Med. 183, 2471–2479 (1996).

    CAS  PubMed  Google Scholar 

  11. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    CAS  PubMed  Google Scholar 

  12. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    CAS  PubMed  Google Scholar 

  13. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  14. Chiu, C. P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cell 14, 239–248 (1996).

    CAS  Google Scholar 

  15. Chiba, K. et al. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife 4, e07918 (2015).

    PubMed Central  Google Scholar 

  16. Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA 92, 4818–4822 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Meier, B. et al. trt-1 is the Caenorhabditis elegans catalytic subunit of telomerase. PLoS Genet. 2, e18 (2006).

    PubMed  PubMed Central  Google Scholar 

  18. Harel, I. et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 160, 1013–1026 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pech, M. F. et al. High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes Dev. 29, 2420–2434 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Garbuzov, A. et al. Purification of GFRα1+ and GFRα1 spermatogonial stem cells reveals a niche-dependent mechanism for fate determination. Stem Cell Rep. 10, 553–567 (2018).

    CAS  Google Scholar 

  21. Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl Acad. Sci. USA 108, 179–184 (2011).

    CAS  PubMed  Google Scholar 

  22. Lin, S. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556, 244–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Artandi, S. E. et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl Acad. Sci. USA 99, 8191–8196 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Allsopp, R. C., Morin, G. B., DePinho, R., Harley, C. B. & Weissman, I. L. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102, 517–520 (2003).

    CAS  PubMed  Google Scholar 

  25. Gunes, C. & Rudolph, K. L. The role of telomeres in stem cells and cancer. Cell 152, 390–393 (2013).

    PubMed  Google Scholar 

  26. Aubert, G. Telomere dynamics and aging. Prog. Mol. Biol. Transl Sci. 125, 89–111 (2014).

    CAS  PubMed  Google Scholar 

  27. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    CAS  PubMed  Google Scholar 

  28. Yui, J., Chiu, C. P. & Lansdorp, P. M. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood 91, 3255–3262 (1998).

    CAS  PubMed  Google Scholar 

  29. Morrison, S. J., Prowse, K. R., Ho, P. & Weissman, I. L. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216 (1996).

    CAS  PubMed  Google Scholar 

  30. Schepers, A. G., Vries, R., van den Born, M., van de Wetering, M. & Clevers, H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 30, 1104–1109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wick, M., Zubov, D. & Hagen, G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 232, 97–106 (1999).

    CAS  PubMed  Google Scholar 

  32. Takakura, M. et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res. 59, 551–557 (1999).

    CAS  PubMed  Google Scholar 

  33. Horikawa, I., Cable, P. L., Afshari, C. & Barrett, J. C. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res. 59, 826–830 (1999).

    CAS  PubMed  Google Scholar 

  34. Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nat. Genet. 21, 220–224 (1999).

    CAS  PubMed  Google Scholar 

  35. Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 (1999).

    CAS  PubMed  Google Scholar 

  36. Goueli, B. S. & Janknecht, R. Regulation of telomerase reverse transcriptase gene activity by upstream stimulatory factor. Oncogene 22, 8042–8047 (2003).

    PubMed  Google Scholar 

  37. Kyo, S. et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res. 28, 669–677 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Harle-Bachor, C. & Boukamp, P. Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl Acad. Sci. USA 93, 6476–6481 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gomes, N. M. et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 10, 761–768 (2011).

    CAS  PubMed  Google Scholar 

  40. Bachand, F., Kukolj, G. & Autexier, C. Expression of hTERT and hTR in cis reconstitutes and active human telomerase ribonucleoprotein. RNA 6, 778–784 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Weinrich, S. L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498–502 (1997).

    CAS  PubMed  Google Scholar 

  42. Beattie, T. L., Zhou, W., Robinson, M. O. & Harrington, L. Reconstitution of human telomerase activity in vitro. Curr. Biol. 8, 177–180 (1998).

    CAS  PubMed  Google Scholar 

  43. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    CAS  PubMed  Google Scholar 

  44. Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    CAS  PubMed  Google Scholar 

  45. Kiss, T., Fayet, E., Jady, B. E., Richard, P. & Weber, M. Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Cold Spring Harb. Symp. Quant. Biol. 71, 407–417 (2006).

    CAS  PubMed  Google Scholar 

  46. Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell Biol. 19, 567–576 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Matera, A. G., Terns, R. M. & Terns, M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8, 209–220 (2007).

    CAS  PubMed  Google Scholar 

  48. Kim, N. K., Theimer, C. A., Mitchell, J. R., Collins, K. & Feigon, J. Effect of pseudouridylation on the structure and activity of the catalytically essential P6.1 hairpin in human telomerase RNA. Nucleic Acids Res. 38, 6746–6756 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen, T. H. D. et al. Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557, 190–195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Venteicher, A. S. et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644–648 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jamonnak, N. et al. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA 17, 2011–2025 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuehner, J. N., Pearson, E. L. & Moore, C. Unravelling the means to an end: RNA polymerase II transcription termination. Nat. Rev. Mol. Cell Biol. 12, 283–294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Noel, J. F., Larose, S., Abou Elela, S. & Wellinger, R. J. Budding yeast telomerase RNA transcription termination is dictated by the Nrd1/Nab3 non-coding RNA termination pathway. Nucleic Acids Res. 40, 5625–5636 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    CAS  PubMed  Google Scholar 

  55. Rubtsova, M. P. et al. Integrator is a key component of human telomerase RNA biogenesis. Sci. Rep. 9, 1701 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stadelmayer, B. et al. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat. Commun. 5, 5531–5531 (2014).

    CAS  PubMed  Google Scholar 

  57. Tudek, A. et al. Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol. Cell 55, 467–481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011).

    CAS  PubMed  Google Scholar 

  59. Schilders, G., van Dijk, E. & Pruijn, G. J. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res. 35, 2564–2572 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Goldfarb, K. C. & Cech, T. R. 3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing. BMC Mol. Biol. 14, 23 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Roake, C. M. et al. Disruption of telomerase RNA maturation kinetics precipitates disease. Mol. Cell 74, 688–700 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tseng, C. K., Wang, H. F., Schroeder, M. R. & Baumann, P. The H/ACA complex disrupts triplex in hTR precursor to permit processing by RRP6 and PARN. Nat. Commun. 9, 5430 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tseng, C. K. et al. Human telomerase RNA processing and quality control. Cell Rep. 13, 2232–2243 (2015).

    CAS  PubMed  Google Scholar 

  64. Moon, D. H. et al. Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component. Nat. Genet. 47, 1482–1488 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Henriksson, N., Nilsson, P., Wu, M., Song, H. & Virtanen, A. Recognition of adenosine residues by the active site of poly(A)-specific ribonuclease. J. Biol. Chem. 285, 163–170 (2010).

    CAS  PubMed  Google Scholar 

  66. Wu, M. et al. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J. 24, 4082–4093 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lardelli, R. M. et al. Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat. Genet. 49, 457–464 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Son, A., Park, J. E. & Kim, V. N. PARN and TOE1 constitute a 3′ end maturation module for nuclear non-coding RNAs. Cell Rep. 23, 888–898 (2018).

    CAS  PubMed  Google Scholar 

  69. Deng, T. et al. TOE1 acts as a 3′ exonuclease for telomerase RNA and regulates telomere maintenance. Nucleic Acids Res. 47, 391–405 (2019).

    CAS  PubMed  Google Scholar 

  70. Nguyen, D. et al. A polyadenylation-dependent 3′ end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep. 13, 2244–2257 (2015).

    CAS  PubMed  Google Scholar 

  71. Shukla, S., Schmidt, J. C., Goldfarb, K. C., Cech, T. R. & Parker, R. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat. Struct. Mol. Biol. 23, 286–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Boyraz, B. et al. Posttranscriptional manipulation of TERC reverses molecular hallmarks of telomere disease. J. Clin. Invest. 126, 3377–3382 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Fok, W. C. et al. Posttranscriptional modulation of TERC by PAPD5 inhibition rescues hematopoietic development in dyskeratosis congenita. Blood 133, 1308–1312 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mouaikel, J., Verheggen, C., Bertrand, E., Tazi, J. & Bordonne, R. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol. Cell 9, 891–901 (2002).

    CAS  PubMed  Google Scholar 

  75. Tang, W., Kannan, R., Blanchette, M. & Baumann, P. Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 484, 260–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, L. et al. Loss of human TGS1 hypermethylase promotes increased telomerase RNA and telomere elongation. Cell Rep. 30, 1358–1372.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43, 405–413 (1985).

    CAS  PubMed  Google Scholar 

  78. Lingner, J. & Cech, T. R. Purification of telomerase from euplotes aediculatus: requirement of a primer 3′ overhang. Proc. Natl Acad. Sci. USA 93, 10712–10717 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    CAS  PubMed  Google Scholar 

  80. Tesmer, V. M. et al. Two inactive fragments of the integral RNA cooperate to assemble active telomerase with the human protein catalytic subunit (hTERT) in vitro. Mol. Cell Biol. 19, 6207–6216 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mitchell, J. R. & Collins, K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell 6, 361–371 (2000).

    CAS  PubMed  Google Scholar 

  82. Jiang, J. et al. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 350, aab4070 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Jiang, J. et al. Structure of telomerase with telomeric DNA. Cell 173, 1179–1190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, J. L., Opperman, K. K. & Greider, C. W. A critical stem–loop structure in the CR4–CR5 domain of mammalian telomerase RNA. Nucleic Acids Res. 30, 592–597 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Robart, A. R. & Collins, K. Investigation of human telomerase holoenzyme assembly, activity, and processivity using disease-linked subunit variants. J. Biol. Chem. 285, 4375–4386 (2010).

    CAS  PubMed  Google Scholar 

  86. Schnapp, G., Rodi, H. P., Rettig, W. J., Schnapp, A. & Damm, K. One-step affinity purification protocol for human telomerase. Nucleic Acids Res. 26, 3311–3313 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007).

    CAS  PubMed  Google Scholar 

  88. Venteicher, A. S., Meng, Z., Mason, P. J., Veenstra, T. D. & Artandi, S. E. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132, 945–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cohen, S. B. et al. Protein composition of catalytically active human telomerase from immortal cells. Science 315, 1850–1853 (2007).

    CAS  PubMed  Google Scholar 

  90. Fu, D. & Collins, K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell 28, 773–785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Egan, E. D. & Collins, K. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol. Cell Biol. 32, 2428–2439 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Egan, E. D. & Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA 18, 1747–1759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jady, B. E., Bertrand, E. & Kiss, T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J. Cell Biol. 164, 647–652 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu, Y., Tomlinson, R. L., Lukowiak, A. A., Terns, R. M. & Terns, M. P. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol. Biol. Cell 15, 81–90 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chang, B. D. et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761–3767 (1999).

    CAS  PubMed  Google Scholar 

  96. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, C. & Meier, U. T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 23, 1857–1867 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hoareau-Aveilla, C., Bonoli, M., Caizergues-Ferrer, M. & Henry, Y. hNaf1 is required for accumulation of human box H/ACA snoRNPs, scaRNPs, and telomerase. RNA 12, 832–840 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Grozdanov, P. N., Roy, S., Kittur, N. & Meier, U. T. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15, 1188–1197 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Holt, S. E. et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13, 817–826 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Toogun, O. A., Dezwaan, D. C. & Freeman, B. C. The hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol. 28, 457–467 (2008).

    CAS  PubMed  Google Scholar 

  102. Keppler, B. R., Grady, A. T. & Jarstfer, M. B. The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J. Biol. Chem. 281, 19840–19848 (2006).

    CAS  PubMed  Google Scholar 

  103. Freund, A. et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 159, 1389–1403 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cristofari, G. et al. Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol. Cell 27, 882–889 (2007).

    CAS  PubMed  Google Scholar 

  105. Stern, J. L., Zyner, K. G., Pickett, H. A., Cohen, S. B. & Bryan, T. M. Telomerase recruitment requires both TCAB1 and cajal bodies independently. Mol. Cell Biol. 32, 2384–2395 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhong, F. L. et al. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhong, F. et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 25, 11–16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tycowski, K. T., Shu, M. D., Kukoyi, A. & Steitz, J. A. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol. Cell 34, 47–57 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schmidt, J. C., Zaug, A. J. & Cech, T. R. Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell 166, 1188–1197 e1189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, L. et al. An activity switch in human telomerase based on RNA conformation and shaped by TCAB1. Cell 174, 218–230 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tomlinson, R. L., Li, J., Culp, B. R., Terns, R. M. & Terns, M. P. A Cajal body-independent pathway for telomerase trafficking in mice. Exp. Cell Res. 316, 2797–2809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    CAS  PubMed  Google Scholar 

  113. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    CAS  PubMed  Google Scholar 

  114. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    CAS  PubMed  Google Scholar 

  115. Abreu, E. et al. TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol. Cell Biol. 30, 2971–2982 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sexton, A. N. et al. Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev. 28, 1885–1899 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kocak, H. et al. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev. 28, 2090–2102 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Houghtaling, B. R., Cuttonaro, L., Chang, W. & Smith, S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 14, 1621–1631 (2004).

    CAS  PubMed  Google Scholar 

  120. Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    CAS  PubMed  Google Scholar 

  122. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23, 405–412 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Takai, K. K., Kibe, T., Donigian, J. R., Frescas, D. & de Lange, T. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell 44, 647–659 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Savage, S. A. et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet. 82, 501–509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Walne, A. J., Vulliamy, T., Beswick, R., Kirwan, M. & Dokal, I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594–3600 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Frank, A. K. et al. The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLoS Genet. 11, e1005410 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Yang, D., He, Q., Kim, H., Ma, W. & Songyang, Z. TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J. Biol. Chem. 286, 23022–23030 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Frescas, D. & de Lange, T. A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice. Genes Dev. 28, 153–166 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Miyake, Y. et al. RPA-like mammalian Ctc1–Stn1–Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206 (2009).

    CAS  PubMed  Google Scholar 

  130. Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207–218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Casteel, D. E. et al. A DNA polymerase-α·primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J. Biol. Chem. 284, 5807–5818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, L. Y., Redon, S. & Lingner, J. The human CST complex is a terminator of telomerase activity. Nature 488, 540–544 (2012).

    CAS  PubMed  Google Scholar 

  133. Nandakumar, J. & Cech, T. R. Finding the end: recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 14, 69–82 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jady, B. E., Richard, P., Bertrand, E. & Kiss, T. Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol. Biol. Cell 17, 944–954 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Tomlinson, R. L., Ziegler, T. D., Supakorndej, T., Terns, R. M. & Terns, M. P. Cell cycle-regulated trafficking of human telomerase to telomeres. Mol. Biol. Cell 17, 955–965 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Vogan, J. M. et al. Minimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies. eLife 5, e18221 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Loayza, D. & de Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 424, 1013–1018 (2003).

    Google Scholar 

  138. Latrick, C. M. & Cech, T. R. POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J. 29, 924–933 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007).

    CAS  PubMed  Google Scholar 

  140. Zaug, A. J., Podell, E. R., Nandakumar, J. & Cech, T. R. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev. 24, 613–622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pike, A. M., Strong, M. A., Ouyang, J. P. T. & Greider, C. W. TIN2 functions with TPP1/POT1 to stimulate telomerase processivity. Mol. Cell Biol. 39, e00593–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Greider, C. W. & Blackburn, E. H. Telomeres, telomerase and cancer. Sci. Am. 274, 92–97 (1996).

    CAS  PubMed  Google Scholar 

  143. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    CAS  PubMed  Google Scholar 

  145. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS  PubMed  Google Scholar 

  146. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    PubMed  Google Scholar 

  147. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  148. Davoli, T., Denchi, E. L. & de Lange, T. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Nassour, J. et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature 565, 659–663 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    CAS  PubMed  Google Scholar 

  151. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 73, 7162–7167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Vinagre, J. et al. Frequency of TERT promoter mutations in human cancers. Nat. Commun. 4, 2185 (2013).

    PubMed  Google Scholar 

  155. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet https://doi.org/10.1038/ng.3101 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Borah, S. et al. Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347, 1006–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bell, R. J. et al. Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036–1039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Stern, J. L., Theodorescu, D., Vogelstein, B., Papadopoulos, N. & Cech, T. R. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev. 29, 2219–2224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Xi, L., Schmidt, J. C., Zaug, A. J., Ascarrunz, D. R. & Cech, T. R. A novel two-step genome editing strategy with CRISPR–Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol. 16, 231 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Akincilar, S. C. et al. Long-range chromatin interactions drive mutant TERT promoter activation. Cancer Discov. 6, 1276–1291 (2016).

    CAS  PubMed  Google Scholar 

  161. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    PubMed  Google Scholar 

  163. Shain, A. H. et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373, 1926–1936 (2015).

    PubMed  Google Scholar 

  164. Heidenreich, B., Rachakonda, P. S., Hemminki, K. & Kumar, R. TERT promoter mutations in cancer development. Curr. Opin. Genet. Dev. 24, 30–37 (2014).

    CAS  PubMed  Google Scholar 

  165. Ferber, M. J. et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene 22, 3813–3820 (2003).

    CAS  PubMed  Google Scholar 

  166. Paterlini-Bréchot, P. et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22, 3911–3916 (2003).

    PubMed  Google Scholar 

  167. Bellon, M. & Nicot, C. Regulation of telomerase and telomeres: human tumor viruses take control. J. Natl Cancer Inst. 100, 98–108 (2008).

    CAS  PubMed  Google Scholar 

  168. Kawai-Kitahata, F. et al. Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features. J. Gastroenterol. 51, 473–486 (2016).

    CAS  PubMed  Google Scholar 

  169. Valentijn, L. J. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 47, 1411–1414 (2015).

    CAS  PubMed  Google Scholar 

  170. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Pickett, H. A. & Reddel, R. R. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat. Struct. Mol. Biol. 22, 875–880 (2015).

    CAS  PubMed  Google Scholar 

  173. Dilley, R. L. & Greenberg, R. A. ALTernative telomere maintenance and cancer. Trends Cancer 1, 145–156 (2015).

    PubMed  PubMed Central  Google Scholar 

  174. Soder, A. I. et al. Amplification, increased dosage and in situ expression of the telomerase RNA gene in human cancer. Oncogene 14, 1013–1021 (1997).

    CAS  PubMed  Google Scholar 

  175. Sugita, M. et al. Molecular definition of a small amplification domain within 3q26 in tumors of cervix, ovary, and lung. Cancer Genet. Cytogenet. 117, 9–18 (2000).

    CAS  PubMed  Google Scholar 

  176. Yuan, X., Larsson, C. & Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 38, 6172–6183 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kim, W. et al. Regulation of the human telomerase gene TERT by telomere position effect-over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol. 14, e2000016 (2016).

    PubMed  PubMed Central  Google Scholar 

  178. Armanios, M. & Blackburn, E. H. The telomere syndromes. Nat. Rev. Genet. 13, 693–704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Brown, Y. et al. A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs. Nucleic Acids Res. 35, 6280–6289 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Trahan, C. & Dragon, F. Dyskeratosis congenita mutations in the H/ACA domain of human telomerase RNA affect its assembly into a pre-RNP. RNA 15, 235–243 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zaug, A. J., Crary, S. M., Jesse Fioravanti, M., Campbell, K. & Cech, T. R. Many disease-associated variants of hTERT retain high telomerase enzymatic activity. Nucleic Acids Res. 41, 8969–8978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    CAS  PubMed  Google Scholar 

  183. Vulliamy, T. J. et al. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107, 2680–2685 (2006).

    CAS  PubMed  Google Scholar 

  184. Stanley, S. E. et al. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci. Transl Med. 8, 351ra107 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. Walne, A. J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    CAS  PubMed  Google Scholar 

  186. Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Batista, L. F. et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Walne, A. J. et al. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 98, 334–338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Walne, A. J., Vulliamy, T., Kirwan, M., Plagnol, V. & Dokal, I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am. J. Hum. Genet. 92, 448–453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    CAS  PubMed  Google Scholar 

  191. Vulliamy, T., Marrone, A., Dokal, I. & Mason, P. J. Association between aplastic anaemia and mutations in telomerase RNA. Lancet 359, 2168–2170 (2002).

    CAS  PubMed  Google Scholar 

  192. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    CAS  PubMed  Google Scholar 

  193. Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 352, 1413–1424 (2005).

    CAS  PubMed  Google Scholar 

  194. Armanios, M. et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc. Natl Acad. Sci. USA 102, 15960–15964 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    CAS  PubMed  Google Scholar 

  196. Alder, J. K. et al. Diagnostic utility of telomere length testing in a hospital-based setting. Proc. Natl Acad. Sci. USA 115, E2358–e2365 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. Anderson, B. H. et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat. Genet. 44, 338–342 (2012).

    CAS  PubMed  Google Scholar 

  198. Vulliamy, T. et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl Acad. Sci. USA 105, 8073–8078 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Guo, Y. et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 124, 2767–2774 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Gable, D. L. et al. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. Genes Dev. 33, 1381–1396 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants CA197563 and AG056575 to S.E.A. C.M.R. was supported by MSTP Training Grant GM007365 and by a Gerald J. Lieberman Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Steven E. Artandi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

TERT-CreER

A mouse strain engineered to induce the expression of the recombinase CreERT2, which enables fluorescence labelling of telomerase-expressing cells in vivo.

Pseudouridylation

Enzymatic alteration of the linkage between the uracil base and the ribose sugar moiety of uridine to create its isomer pseudouridine.

WD40 repeat

A protein domain of 44–60 amino acids, which often mediates protein–protein or protein–RNA interactions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roake, C.M., Artandi, S.E. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 21, 384–397 (2020). https://doi.org/10.1038/s41580-020-0234-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-0234-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing