Skip to main content
Log in

Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genome-wide identification, spatio-temporal expression analysis and functional characterization of selected Brassica napus GPATs highlight their roles in cuticular wax biosynthesis and defense against fungal pathogens.

Abstract

Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is a key enzyme in the biosynthesis of glycerolipids, a major component of cellular membranes and extracellular protective layers, such as cuticles in plants. Brassica napus is an economically important crop and cultivated worldwide mostly for its edible oil. The B. napus GPATs (BnGPATs) are insufficiently characterized. Here, we performed genome-wide analysis to identify putative GPATs in B. napus and its diploid progenitors B. rapa and B oleracea. The 32 B. napus BnGPATs are phylogenetically divided into three major groups, cutin, suberin, and diverse ancient groups. Analysis of transcriptomes of different tissues and seeds at different developmental stages revealed the spatial and temporal expression profiles of BnGPATs. The yield and oil quality of B. napus are adversely affected by the necrotrophic fungus, Sclerotinia sclerotiorum. We showed that several BnGPATs, including cutin-related BnGPAT19 and 21, were upregulated in the S. sclerotiorum resistant line. RNAi-mediated suppression of BnGPAT19 and 21 in B. napus resulted in thinner cuticle, leading to rapid water and chlorophyll loss in toluidine blue staining and leaf bleaching assays. In addition, the RNAi plants also developed severe necrotic lesions following fungal inoculation compared to the wild-type plants, indicating that BnGPAT19 and 21 are likely involved in cuticular wax biosynthesis that is critical for initial pathogen defense. Taken together, we provided a comprehensive account of GPATs B. napus and characterized BnGPAT19 and 21 for their potential roles in cuticular wax biosynthesis and defense against fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal R, Kumar A, Thakur H (1997) Effect of Sclerotinia rot on oil quality in low erucic acid cultivars of rapeseed. Cruciferae Newsletter 19:103–104

    Google Scholar 

  • Alizadeh N, Babai-Ahary A, Assadi Y, Valizadeh M, Passebaneslam B (2006) The effects of Sclerotinia stem rot of oilseed rape on the production and quality of extracted oil. JWSS-Isfahan Univ Technol 10:485–495

    Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54–54

    PubMed  PubMed Central  Google Scholar 

  • Barbetti M, Banga S, Fu T, Li Y, Singh D, Liu S, Ge X, Banga S (2014) Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica 197:47–59

    Google Scholar 

  • Bartels S, Anderson JC, González Besteiro MA, Carreri A, Hirt H, Buchala A, Métraux J-P, Peck SC, Ulm R (2009) MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19:351–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betts MJ, Guigó R, Agarwal P, Russell RB (2001) Exon structure conservation despite low sequence similarity: a relic of dramatic events in evolution? EMBO J 20:5354–5360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum T, Briesemeister S, Kohlbacher O (2009) MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinform 10:274

    Google Scholar 

  • Boland G, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Google Scholar 

  • Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    CAS  PubMed  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubès J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    CAS  PubMed  Google Scholar 

  • Chen X, Chen G, Truksa M, Snyder CL, Shah S, Weselake RJ (2014) Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus. J Exp Bot 65:4201–4215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Snyder CL, Truksa M, Shah S, Weselake RJ (2011a) sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signal Behav 6:1695–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011b) Three homologous genes encoding sn-Glycerol-3-phosphate acyltransferase 4 EXHIBIT DIFFERENT EXPRESSION PATTERNS AND FUNCTIONAL DIVERGENCE in Brassica napus. Plant Physiol 155:851–865

    CAS  PubMed  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collet J-F, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E (1998) A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem 273:14107–14112

    CAS  PubMed  Google Scholar 

  • Cui Y, Ma J, Liu G, Wang N, Pei W, Wu M, Li X, Zhang J, Yu J (2019) Genome-Wide identification, sequence variation, and expression of the glycerol-3-phosphate acyltransferase (GPAT) gene family in gossypium. Front Genet 10:116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fawke S, Torode TA, Gogleva A, Fich EA, Sørensen I, Yunusov T, Rose JK, Schornack S (2019) Glycerol phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and Nicotiana benthamiana leaf epidermis. New Phytol 223:1547–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gidda SK, Shockey JM, Rothstein SJ, Dyer JM, Mullen RT (2009) Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem 47:867–879

    CAS  PubMed  Google Scholar 

  • Gimeno RE, Cao J (2008) Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 49:2079–2088

    CAS  PubMed  Google Scholar 

  • Girard IJ, Tong C, Becker MG, Mao X, Huang J, de Kievit T, Fernando WGD, Liu S, Belmonte MF (2017) RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. J Exp Bot 68:5079–5091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Baro MR, Lewin TM, Coleman RA (2007) Regulation of triglyceride metabolism. II. Function of mitochondrial GPAT1 in the regulation of triacylglycerol biosynthesis and insulin action. Am J Physiol Gastrointest Liver Physiol 292:G1195–1199

    CAS  PubMed  Google Scholar 

  • Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    CAS  PubMed  Google Scholar 

  • Guschina IA, Everard JD, Kinney AJ, Quant PA, Harwood JL (2014) Studies on the regulation of lipid biosynthesis in plants: application of control analysis to soybean. Biochim Biophys Acta 1838:1488–1500

    CAS  PubMed  Google Scholar 

  • He Y, Han J, Liu R, Ding Y, Wang J, Sun L, Yang X, Zeng Y, Wen W, Xu J, Zhang H, Yan X, Chen Z, Gu Z, Chen H, Tang H, Deng X, Cheng Y (2018) Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Hort Res 5:43

    Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Joshi RK, Megha S, Rahman MH, Basu U, Kav NN (2016) A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene 590:57–67

    CAS  PubMed  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, De Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A (2018) Ensemble genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–d808

    CAS  PubMed  Google Scholar 

  • Kodama Y, Shumway M, Leinonen R (2012) The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–56

    CAS  PubMed  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krem MM, Di Cera E (2001) Molecular markers of serine protease evolution. EMBO J 20:3036–3045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011) Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinform 12:124

    Google Scholar 

  • Lee SB, Kim HU, Suh MC (2016) MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol 57:2300–2311

    CAS  PubMed  Google Scholar 

  • Lee SB, Suh MC (2015) Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant Cell Physiol 56:48–60

    CAS  PubMed  Google Scholar 

  • Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771

    CAS  PubMed  Google Scholar 

  • Li X-C, Zhu J, Yang J, Zhang G-R, Xing W-F, Zhang S, Yang Z-N (2012) Glycerol-3-phosphate acyltransferase 6 (GPAT6) is important for tapetum development in Arabidopsis and plays multiple roles in plant fertility. Mol Plant 5:131–142

    CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA 104:18339–18344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci USA 106:22008–22013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mañas-Fernández A, Li-Beisson Y, Alonso DL, García-Maroto F (2010) Cloning and molecular characterization of a glycerol-3-phosphate O-acyltransferase (GPAT) gene from Echium (Boraginaceae) involved in the biosynthesis of cutin polyesters. Planta 232:987–997

    PubMed  Google Scholar 

  • Men X, Shi J, Liang W, Zhang Q, Lian G, Quan S, Zhu L, Luo Z, Chen M, Zhang D (2017) Glycerol-3-phosphate acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. J Exp Bot 68:513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    CAS  PubMed  Google Scholar 

  • Mietkiewska E, Chen G, Jayawardhane K, Singer SD, Weselake RJ, Dyer JM, Tomasi P (2016) Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids. J Exp Bot 67:4627–4638

    PubMed  PubMed Central  Google Scholar 

  • Nakamura Y (2017) Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends Plant Sci 22:1027–1040

    CAS  PubMed  Google Scholar 

  • Niu Y, Wu G-Z, Ye R, Lin W-H, Shi Q-M, Xue L-J, Xu X-D, Li Y, Du Y-G, Xue H-W (2009) Global analysis of gene expression profiles in brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsisthaliana. Mol Plant 2:1107–1122

    CAS  PubMed  Google Scholar 

  • Okazaki Y, Saito K (2014) Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79:584–596

    CAS  PubMed  Google Scholar 

  • Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou I, Fonseca NA, Keays M, Tang YA, Barrera E, Bazant W, Burke M, Fullgrabe A, Fuentes AM, George N, Huerta L, Koskinen S, Mohammed S, Geniza M, Preece J, Jaiswal P, Jarnuczak AF, Huber W, Stegle O, Vizcaino JA, Brazma A, Petryszak R (2018) Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res 46:D246–d251

    CAS  PubMed  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076

    CAS  PubMed  Google Scholar 

  • Paya-Milans M, Aznar-Moreno JA, Balbuena TS, Haslam RP, Gidda SK, Perez-Hormaeche J, Mullen RT, Thelen JJ, Napier JA, Salas JJ, Garces R, Martinez-Force E, Venegas-Caleron M (2016) Sunflower HaGPAT9-1 is the predominant GPAT during seed development. Plant Sci 252:42–52

    CAS  PubMed  Google Scholar 

  • Petit J, Bres C, Mauxion JP, Tai FW, Martin LB, Fich EA, Joubes J, Rose JK, Domergue F, Rothan C (2016) The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. Plant Physiol 171:894–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenergetics 975:384–394

    CAS  Google Scholar 

  • Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, Blee E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    CAS  PubMed  Google Scholar 

  • Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11

    CAS  PubMed  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Coluccia F, Torres M, L'Haridon F, Métraux J-P (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274–274

    PubMed  PubMed Central  Google Scholar 

  • Sharma P, Meena P, Verma P, Saharan G, Mehta N, Singh D, Kumar A (2016) Sclerotinia sclerotiorum (Lib) de Bary causing Sclerotinia rot in oilseed Brassicas: a review. J Oilseed Brassica 1:1–44

    Google Scholar 

  • Shockey J, Regmi A, Cotton K, Adhikari N, Browse J, Bates PD (2016) Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis. Plant Physiol 170:163–179

    CAS  PubMed  Google Scholar 

  • Singh AK, Dwivedi V, Rai A, Pal S, Reddy SG, Rao DK, Shasany AK, Nagegowda DA (2015a) Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced with anolides and biotic stress tolerance. Plant Biotechnol J 13:1287–1299

    CAS  PubMed  Google Scholar 

  • Singh SK, Wu Y, Ghosh JS, Pattanaik S, Fisher C, Wang Y, Lawson D, Yuan L (2015b) RNA-sequencing reveals global transcriptomic changes in Nicotiana tabacum responding to topping and treatment of axillary-shoot control chemicals. Sci Rep 5:18148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y (2004) A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J 37:139–146

    CAS  PubMed  Google Scholar 

  • Wada H, Kobayashi M, Sato R, Satoh N, Miyasaka H, Shirayama Y (2002) Dynamic insertion–deletion of introns in Deuterostome EF-1α genes. J Mol Evol 54:118–128

    CAS  PubMed  Google Scholar 

  • Wang J, Li Y, Liang C (2008) Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea. Transgenic Res 17:417–424

    CAS  PubMed  Google Scholar 

  • Wang J, Singh SK, Du C, Li C, Fan J, Pattanaik S, Yuan L (2016) Comparative transcriptomic analysis of two Brassica napus near-isogenic lines reveals a network of genes that influences seed oil accumulation. Front Plant Sci 7:1498

    PubMed  PubMed Central  Google Scholar 

  • Waschburger E, Kulcheski FR, Veto NM, Margis R, Margis-Pinheiro M, Turchetto-Zolet AC (2018) Genome-wide analysis of the glycerol-3-phosphate acyltransferase (GPAT) gene family reveals the evolution and diversification of plant GPATs. Genet Mol Biol 41:355–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506

    CAS  PubMed  Google Scholar 

  • Weng H, Molina I, Shockey J, Browse J (2010) Organ fusion and defective cuticle function in a lacs1lacs2 double mutant of Arabidopsis. Planta 231:1089–1100

    CAS  PubMed  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE 8:e67740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y (2016) Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep 6:19007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W (2018) Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC Plant Biol 18:318

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huai D, Yang Q, Cheng Y, Ma M, Kliebenstein DJ, Zhou Y (2015) Overexpression of three glucosinolate biosynthesis genes in Brassica napus Identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS ONE 10:e0140491

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y-M, Rock CO (2008) Thematic review series: glycerolipids. Acyltransferases in bacterial glycerophospholipid synthesis. J Lipid Res 49:1867–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis %3cem%3eAtGPAT1%3c/em%3e, a Member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276:41710–41716

    CAS  PubMed  Google Scholar 

  • Zhu L, Ni W, Liu S, Cai B, Xing H, Wang S (2017) Transcriptomics analysis of apple leaves in response to Alternaria alternata apple pathotype infection. Front Plant Sci 8:22–22

    PubMed  PubMed Central  Google Scholar 

  • Ziv C, Zhao Z, Gao YG, Xia Y (2018) Multifunctional roles of plant cuticle during plant-pathogen interactions. Front Plant Sci 9:1088–1088

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Chunfeng Du and Shuanshi Xian, Cotton Research Institute of Shanxi Academy of Agricultural Sciences, for providing the plant material. This study was supported by Education, Culture and Health key introduction Project by State Administration of Foreign Experts Affairs (110000241120180012), China; Shanxi Provincial Key R & D Technology (International Cooperation) Project Grant (201803D421016), China; Higher Education Institution Project of Shanxi Province: Ecological Remediation of Soil Pollution Disciplines Group (Grant No. 20181401), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxue Wang or Ling Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 17814 kb)

Supplementary file2 (XLS 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Singh, S.K., Geng, S. et al. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus. Planta 251, 93 (2020). https://doi.org/10.1007/s00425-020-03384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03384-4

Keywords

Navigation