Skip to main content
Log in

Three dimensional unassisted sit-to-stand prediction for virtual healthy young and elderly individuals

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Sit-to-stand (STS) motion is one of the most important tasks in daily life and is one of the key determinants of functional independence, especially for the senior people. The STS motion has been extensively studied in the literature, mostly through experiments. Compared to numerous experimental studies, there are limited simulations with mostly assuming bilateral symmetry for STS tasks. However, it is not true even for healthy individuals to perform STS tasks with a perfect bilateral symmetry. In this study, predictive dynamics is utilized for STS prediction. The problem can be constructed as a nonlinear optimization formulation. The digital human model has 21 degrees of freedom (DOFs) for the unassisted STS tasks. The quartic B-spline interpolation is implemented for representing joint angle profiles. The recursive Lagrangian dynamics approach and the Denavit–Hartenberg method are implemented for the equations of motion. This study is to develop a generic three-dimensional unassisted STS motion prediction method for healthy young and elderly individuals. Results show that trunk joint angle peak values are similar between the two virtual-groups in the sagittal, frontal, and transverse planes. Lower-limbs’ joint angle and velocity profiles and their peak values between the right and left side for both virtual groups are also similar. The normalized peak joint torques are slight differences in each active DOF between the two virtual groups and the peak values are similar. The proposed method has been indirectly validated through the literature experimental results. The developed method has various potential applications in the design of exoskeleton, microelectromechanical system for fall detection, and assistive devices in rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dall, P.M., Kerr, A.: Frequency of the sit to stand task: an observational study of free-living adults. Appl. Ergon. 41(1), 58–61 (2010)

    Article  Google Scholar 

  2. Schultz, A.B., Alexander, N.B., Ashton-Miller, J.A.: Biomechanical analyses of rising from a chair. J. Biomech. 25(12), 1383–1391 (1992)

    Article  Google Scholar 

  3. Dawson, D.A., Hendershot, G.E., Fulton, J.P.: Aging in the eighties: functional limitations of individuals age 65 years and over. National Center for Health Statistics (U.S.) (1987)

  4. Riley, P., Schenkman, M.L., Mann, R.W., Andrew, W.: Mechanics of a constrained chair-rise. J. Biomech. 24(1), 77–85 (1991)

    Article  Google Scholar 

  5. Gross, M.M., Stevenson, P.J., Charette, S.L., Pyka, G., Marcus, R.: Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture 8(3), 175–185 (1998)

    Article  Google Scholar 

  6. Kralj, A., Jaeger, R.J., Munih, M.: Analysis of standing up and sitting down in humans: definitions and normative data presentation. J. Biomech. 23(11), 1123–1138 (1990)

    Article  Google Scholar 

  7. Pai, Y.-C., Naughton, B.J., Chang, R.W., Rogers, M.W.: Control of body centre of mass momentum during sit-to-stand among young and elderly adults. Gait Posture 2(2), 109–116 (1994)

    Article  Google Scholar 

  8. Hughes, M.A., Weiner, D.K., Schenkman, M.L., Long, R.M., Studenski, S.A.: Chair rise strategies in the elderly. Clin. Biomech. 9(3), 187–192 (1994)

    Article  Google Scholar 

  9. Pai, Y.-C., Rogers, M.W.: Speed variation and resultant joint torques during sit-to-stand. Arch. Phys. Med. Rehabil. 72(11), 881–885 (1991)

    Article  Google Scholar 

  10. Lord, S.R., Murray, S.M., Chapman, K., Munro, B., Tiedemann, A.: Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol., Ser. A, Biol. Sci. Med. Sci. 57(8), 539–543 (2002)

    Article  Google Scholar 

  11. Papa, E., Cappozzo, A.: Sit-to-stand motor strategies investigated in able-bodied young and elderly subjects. J. Biomech. 33, 1113–1122 (2000)

    Article  Google Scholar 

  12. Papa, E., Cappozzo, A.: A telescopic inverted-pendulum model of the musculo-skeletal system and its use for the analysis of the sit-to-stand motor task. J. Biomech. 32(11), 1205–1212 (1999)

    Article  Google Scholar 

  13. Dehail, P., Bestaven, E., Muller, F., Mallet, A., Robert, B., Bourdel-Marchasson, I., Petit, J.: Kinematic and electromyographic analysis of rising from a chair during a ‘sit-to-walk’ task in elderly subjects: role of strength. Clin. Biomech. 22(10), 1096–1103 (2007)

    Article  Google Scholar 

  14. Yoshioka, S., Nagano, A., Hay, D.C., Fukashiro, S.: Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task. Biomed. Eng. Online 8(2), 27 (2009)

    Article  Google Scholar 

  15. Fujimoto, M., Chou, L.-S.: Dynamic balance control during sit-to-stand movement: an examination with the center of mass acceleration. J. Biomech. 45(3), 543–548 (2012)

    Article  Google Scholar 

  16. Mourey, F., Grishin, A., D’Athis, P., Pozzo, T., Stapley, P.: Standing up from a chair as a dynamic equilibrium task: a comparison between young and elderly subjects. J. Gerontol., Ser. A, Biol. Sci. Med. Sci. 55(9), B425–B431 (2000)

    Article  Google Scholar 

  17. Lundin, T.M., Grabiner, M.D., Jahnigen, D.W.: On the assumption of bilateral lower extremity joint moment symmetry during the sit-to-stand task. J. Biomech. 28(1), 109–112 (1995)

    Article  Google Scholar 

  18. Gillette, J.C., Stevermer, C.A.: The effects of symmetric and asymmetric foot placements on sit-to-stand joint moments. Gait Posture 35(1), 78–82 (2012)

    Article  Google Scholar 

  19. Gilleard, W., Crosbie, J., Smith, R.: Rising to stand from a chair: symmetry, and frontal and transverse plane kinematics and kinetics. Gait Posture 27(1), 8–15 (2008)

    Article  Google Scholar 

  20. Roy, G., Nadeau, S., Gravel, D., Malouin, F., McFadyen, B.J., Piotte, F.: The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clin. Biomech. 21(6), 585–593 (2006)

    Article  Google Scholar 

  21. Kawagoe, S., Tajima, N., Chosa, E.: Biomechanical analysis of effects of foot placement with varying chair. J. Orthop. Sci. 5(2), 124–133 (2000)

    Article  Google Scholar 

  22. Rodosky, M.W., Andriacchi, T.P., Andersson, G.B.: The influence of chair height on lower limb mechanics during rising. J. Orthop. Res. 7(2), 266–271 (1989)

    Article  Google Scholar 

  23. Burdett, R.G., Habasevich, R., Pisciotta, J., Simon, S.R.: Biomechanical comparison of rising from two types of chairs. Phys. Ther. 65(8), 1177–1183 (1985)

    Article  Google Scholar 

  24. Arborelius, U.P., Wretenberg, P., Lindberg, F.: The effects of armrests and high seat heights on lower-limb joint load and muscular activity during sitting and rising. Ergonomics 35(11), 1377–1391 (1992)

    Article  Google Scholar 

  25. Anglin, C., Wyss, U.P.: Arm motion and load analysis of sit-to-stand, stand-to-sit, cane walking and lifting. Clin. Biomech. 15(6), 441–448 (2000)

    Article  Google Scholar 

  26. O’Meara, D.M., Smith, R.M.: The effects of unilateral grab rail assistance on the sit-to-stand performance of older aged adults. Hum. Mov. Sci. 25(2), 257–274 (2006)

    Article  Google Scholar 

  27. Kamnik, R., Bajd, T., Kralj, A.: Functional electrical stimulation and arm supported sit-to-stand transfer after paraplegia: a study of kinetic parameters. Artif. Organs 23(5), 413–417 (1999)

    Article  Google Scholar 

  28. Najafi, B., Aminian, K., Loew, F., Blanc, Y., Robert, P.A.: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng. 49(8), 843–851 (2002)

    Article  Google Scholar 

  29. Ikeda, E.R., Schenkman, M.L., Riley, P.O., Hodge, W.A.: Influence of age on dynamics of rising from a chair. Phys. Ther. 71(6), 473–481 (1991)

    Article  Google Scholar 

  30. Shepherd, R.B., Koh, H.P.: Some biomechanical consequences of varying foot placement in sit-to-stand in young women. Scand. J. Rehabil. Med. 28(2), 79–88 (1996)

    Google Scholar 

  31. Su, F.C., Lai, K.A., Hong, W.H.: Rising from chair after total knee arthroplasty. Clin. Biomech. 13(3), 176–181 (1998)

    Article  Google Scholar 

  32. Talis, V.L., Grishin, A.A., Solopova, I.A., Oskanyan, T.L., Belenky, V.E., Ivanenko, Y.P.: Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Clin. Biomech. 23(4), 424–433 (2008)

    Article  Google Scholar 

  33. Coghlin, S.S., McFadyen, B.J.: Transfer strategies used to rise from a chair in normal and low back pain subjects. Clin. Biomech. 9(2), 85–92 (1994)

    Article  Google Scholar 

  34. Mizner, R.L., Snyder-Mackler, L.: Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J. Orthop. Res. 23, 1083–1090 (2005)

    Article  Google Scholar 

  35. Mak, M.K.Y., Levin, O., Mizrahi, J., Christina, H.-C.W.Y.: Joint torques during sit-to-stand in healthy subjects and people with Parkinson’s disease. Clin. Biomech. 18(3), 197–206 (2003)

    Article  Google Scholar 

  36. Bahrami, F., Riener, R., Jabedar-Maralani, P., Schmidt, G.: Biomechanical analysis of sit-to-stand transfer in healthy and paraplegic subjects. Clin. Biomech. 15(2), 123–133 (2000)

    Article  Google Scholar 

  37. Sibella, F., Galli, M., Romei, M., Montesano, A., Crivellini, M.: Biomechanical analysis of sit-to-stand movement in normal and obese subjects. Clin. Biomech. 18(8), 745–750 (2003)

    Article  Google Scholar 

  38. Lou, S.-Z., Chou, Y.-L., Chou, P.-H., Lin, C.-J., Chen, U.-C.: Sit-to-stand at different periods of pregnancy. Clin. Biomech. 16(3), 194–198 (2001)

    Article  Google Scholar 

  39. Gilleard, W., Crosbie, J., Smith, R.: A longitudinal study of the effect of pregnancy on rising to stand from a chair. J. Biomech. 41(4), 779–787 (2008)

    Article  Google Scholar 

  40. Pandy, M.G., Garner, B.A., Anderson, F.C.: Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. ASME J. Biomech. Eng. 117(1), 15–26 (1995)

    Article  Google Scholar 

  41. Domire, Z.J.: A biomechanical analysis of maximum vertical jumps and sit-to-stand. PhD dissertation, Pennsylvania State University (2004)

  42. Kuzelicki, J., Zefran, M., Burger, H., Bajd, T.: Synthesis of standing-up trajectories using dynamic optimization. Gait Posture 21(1), 1–11 (2005)

    Article  Google Scholar 

  43. Mughal, A., Iqbal, K.: 3D bipedal model with holonomic constraints for the decoupled optimal controller design of the biomechanical sit-to-stand maneuver. ASME J. Biomech. Eng. 132(4), 041010 (2010)

    Article  Google Scholar 

  44. Robert, T., Causse, J., Monnier, G.: Estimation of external contact loads using an inverse dynamics and optimization approach: General method and application to sit-to-stand maneuvers. J. Biomech. 46(13), 2220–2227 (2013)

    Article  Google Scholar 

  45. Ozsoy, B., Yang, J.: Simulation-based unassisted sit-to-stand motion prediction for healthy young individuals. In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Buffalo, NY, USA (2014)

    Google Scholar 

  46. Abdel-Malek, K., Arora, J.: Human Motion Simulation: Predictive Dynamics, 1st edn. Academic Press, New York (2013)

    Google Scholar 

  47. Xiang, Y., Chung, H.-J., Kim, J.H., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J.S., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. 41(3), 465–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  49. Gordon, C.C., Churchill, T., Clauser, C.E., Bradtmiller, B., McConville, J.T., Tebbetts, I., Walker, R.A.: Anthropometric survey of U.S. army personnel: methods and summary statistics. Final report NATICK/TR-89/027, U.S. Army Natick Research, Development and Engineering Center, Natick, MA (1988)

  50. McConville, J., Clauser, C., Churchill, T.: Anthropometric relationships of body and body segment moments of inertia. Anthropology Research Project inc., Yellow Springs, OH (1980)

  51. Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (1997)

    Book  MATH  Google Scholar 

  52. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based motion prediction of mechanical systems: sensitivity analysis. Struct. Multidiscip. Optim. 37(6), 595–608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Howard, B., Yang, J.: A New stability criterion for human seated tasks with given postures. Int. J. Humanoid Robot. 09(03), 1250015 (2012)

    Article  Google Scholar 

  54. Kerr, K.M., White, J.A., Barr, D.A., Mollan, R.A.B.: Analysis of sit-to-stand movement cycle in normal subjects. Clin. Biomech. 12, 236–245 (1997)

    Article  Google Scholar 

  55. Anderson, D.E., Madigan, M.L., Nussbaum, M.A.: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40(14), 3105–3113 (2007)

    Article  Google Scholar 

  56. Cahalan, T.D., Johnson, M.E., Liu, S.C.E.: Quantitative measurements of hip strength in different age groups. Clin. Orthop. Relat. Res. 246, 136–145 (1989)

    Google Scholar 

  57. Kumar, S.: Isolated planar trunk strengths measurement in normals, part III: results and database. Int. J. Ind. Ergon. 17, 103–111 (1996)

    Article  Google Scholar 

  58. Roebuck, J.A., Kroemer, K.H.E., Thomson, W.G.: Engineering Anthropometry Methods. Wiley–Interscience, New York (1975)

    Google Scholar 

  59. Shephard, R.J.: A personal perspective on aging and productivity, with particular reference to physically demanding work. Ergonomics 38(4), 617–636 (1995)

    Article  Google Scholar 

  60. Hirschfeld, H., Thorsteinsdottir, M., Olsson, E.: Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. J. Neurophysiol. 82(6), 3021–3029 (1999)

    Article  Google Scholar 

  61. Roebroeck, M.E., Doorenbosch, C.A.M., Harlaar, J., Jacobs, R., Lankhorst, G.J.: Biomechanics and muscular activity during sit-to-stand transfer. Clin. Biomech. 9(4), 235–244 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ozsoy, B. Three dimensional unassisted sit-to-stand prediction for virtual healthy young and elderly individuals. Multibody Syst Dyn 49, 33–52 (2020). https://doi.org/10.1007/s11044-019-09699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09699-9

Keywords

Navigation