Skip to main content

Advertisement

Log in

Optimized design of thermal insulation and fluid drag reduction for circumferentially grooved annular seal with MMA and perturbation methods

  • Review Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Circumferentially grooved seals have been widely used in pumps to eliminate outward leakage of rotating liquid. On many occasions, the turbulent flow enhances the drag force on the interface between the liquid and the stator as well as the interface between the liquid and the rotor, creating much higher heat exchange than the conventional thermal conduction in laminar flows. Attention must be paid in the seal design to prevent rapid heating by the seal liquid to the ambient stator. In this study, the geometry of a circumferentially grooved seal is optimized for a better design of thermal insulation as well as reduction in drag force of the seal fluid. For the forward problem, i.e., the hydraulic and thermal analysis of the seal, the theory of bulk flow is used to simplify the thin-film liquid to a two-dimensional field which preserves the average characteristics of the original flow. The method of three-control volume is adopted to partition the liquid into three types of cavity flows. The governing equations of continuity, momentum, and energy transportation are presented for each control volume, and are approximated by the perturbation method and the Fourier expansion. The fluid and thermal solutions by the present perturbation method are validated by a CFD simulation. For the seal optimization, the multi-objective optimization for thermal insulation and drag reduction is converted into an integrated optimization problem with key geometrical parameters of the seal. Response surfaces are generated through radial basis functions to make the constraint functions explicit for the efficiency of the optimization process. The method of moving asymptotes (MMA) is adopted to find the optimized design of the seal geometry with the best performance of thermal insulation and drag reduction of liquid. Examples are presented to demonstrate the effectiveness of the present optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Benckert H, Wachter J (1978) Studies on vibrations stimulated by lateral forces in sealing gaps. Dissertation, NASA Glenn Research Center

  • Benckert H, Wachter J (1980) Flow induced spring coefficients of labyrinth seals for applications in turbomachinery. Dissertation, NASA Lewis Research Center

  • Björkman M, Holmström K (2000) Global optimization of costly nonconvex functions using radial basis functions. Optim Eng 1(4):373–397

    Article  MathSciNet  Google Scholar 

  • Blazek J (2015) Computational fluid dynamics principles and applications, third edition, Waltham, USA.p228-229

  • Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimization. Struct Multidiscip Optim 24(4):263–276

    Article  Google Scholar 

  • Cao XJ, Wang YF, (2016) Optimization of load–carrying and heat–insulating multi–layered thin–walled structures based on bionics using genetic algorithm. Struct Multidiscip Optim 53:813–824

  • Childs DW (1983a) Dynamic analysis of turbulent annular seals based on Hirs’ lubrication equation. ASME J Lubr Technol 105:429–436

    Article  Google Scholar 

  • Childs DW (1983b) Finite-length solutions for rotor dynamic coefficients of turbulent annular seals. ASME J Lubr Technol 105:437–444

    Article  Google Scholar 

  • Childs DW (1993) Turbomachinery rotor dynamics: phenomena, modeling and analysis. Wiley, New York

    Google Scholar 

  • Christian L, Sigmund O (2018) A density-based topology optimization methodology for thermoelectric energy conversion problems. Struct Multidiscip Optim 57:1427–1442

    Article  MathSciNet  Google Scholar 

  • Dai HH, Yue XK, Yuan JP (2016) Half-order optimally scaled Fourier expansion method for solving nonlinear dynamical system. Int J Non Linear Mech 87:21–29

    Article  Google Scholar 

  • Fleury C, Braibant V (1986) Structural optimization – a new dual method using mixed variables. Int J Numer Methods Eng 24:359–373

    MathSciNet  MATH  Google Scholar 

  • Florjancic S (1990) Annular seals of high energy centrifugal pumps: a new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Dissertation, Swiss Federal Institute of Technology (Zürich)

  • Fritz RJ (1970) The effects of an annular fluid on the vibrations of a long rotor, part 1- theory. ASME J Basic Eng 92:923–929

    Article  Google Scholar 

  • Grunenwald T, Axisa F, Bennett G, Autunes J (1996) Dynamics of rotors immersed in eccentric annular flow. Part 2: experiments. J Fluids Struct 10:919–944

    Article  Google Scholar 

  • Gutmann HM (2001) A radial basis function method for global optimization. J Glob Optim 19(3):201–227

    Article  MathSciNet  Google Scholar 

  • Ha TW, Lee AS (2000) A rotordynamic analysis of circumferentially-grooved pump seals based on a three-control-volume theory. KSME Int J 14(3):261–271

    Article  Google Scholar 

  • Hirs GG (1973) A bulk-flow theory for turbulence in lubricant films. ASME J Lubr Technol 95(1):137–146

    Article  Google Scholar 

  • Holmes MH (1995) Introduction to perturbation methods. Springer-Verlag, New York

    Book  Google Scholar 

  • Iwatsubo T, Matooka N, Kawai R (1982) Proceeding of the rotordynamic instability problems in high performance turbomachinery. Flow induced force and flow pattern of labyrinth seal 1. Dissertation, Texas A&M University

  • Launder BE, Leschziner M (1978) Flow in finite-width, thrust bearings including inertial effects: I—laminar flow. Trans ASME 100:330–338

    Article  Google Scholar 

  • Li JL, Wang HY, Li SC (2019) A novel phosphorus-silicon containing epoxy resin with enhanced thermal stability, flame retardancy and mechanical properties. Polym Degrad Stab 164:36–45

    Article  Google Scholar 

  • Marquette OR, Childs DW (1996) An extended three-control-volume theory for circumferentially-grooved liquid seals. Trans ASME 118:276–285

    Article  Google Scholar 

  • Nelson CC, Nguyen DT (1987) Comparison of Hirs’ equation with Moody’s equation for determining rotor dynamic coefficients of annular pressure seals. ASME J Tribol 109:144–148

    Article  Google Scholar 

  • Nordmann R, Massmann H (1985) Identification of dynamic coefficients of annular turbulent seals. Application of System Identification in Engineering 543–548

  • Proctor MP, Delgado IR (2008) Preliminary test results of a non-contacting finger seal on a herringbone-grooved rotor. AIAA J 4506:1–16

    Google Scholar 

  • Qian SH, Wang W et al (2018) Topology optimization of fluid flow channel in cold plate for active phased array antenna. Struct Multidiscip Optim 57:2223–2232

    Article  MathSciNet  Google Scholar 

  • Seifert B (2007) Measurements versus predictions for rotordynamic coefficients and leakage rates for a novel hole-pattern gas seal. Dissertation, Taxes A&M University

  • Sun QG, Jiang PL, Yu L (1999) Study on wall friction and static characteristics of eccentric rotor in large gap annular flow. Tribology 19(3):261–265

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  Google Scholar 

  • Vantyghem G, Boel V, Steeman M et al (2019) Multi-material topology optimization involving simultaneous structural and thermal analyses. Struct Multidiscip Optim 59:731–743 https://doi.org/10.1007/s00158-018-2095-z

  • Xiang YT et al (2017) Comparison and analysis of leakages from two clearance structures in seal ring used in centrifugal pump. Process Equipment Piping 53(1):49–54

    Google Scholar 

  • Yang Z, Andres LS, Childs DW (1993) Thermal effects in cryogenic liquid annular seals—part I: theory and approximate solution. J Tribol 115:267–276

    Article  Google Scholar 

  • Yao Y, Ba P et al (2013) Effect of teeth shape on bilateral labyrinth seal characteristics. Lubr Eng 38(10):65–68

    Google Scholar 

Download references

Acknowledgments

We sincerely thank the anonymous reviewers for their careful reading of our manuscript and their many valuable comments and suggestions.

Funding

The authors are grateful for the sponsorships by the Chinese National Program on Key Basic Research Project (2015CB057300), the Fundamental Research Funds for the Central Universities of China (DUT18ZD221), and the Natural Science Foundation of China (U1808214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojian Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Emilio Carlos Nelli Silva

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The nondimensional parameters for (14) are defined as (Yang et al. 1993):

(51)

Coefficients for (24)and(26):

(52)
(53)
(54)
(55)

Coefficients for (19):

$$ {\displaystyle \begin{array}{c}{E}_0=\left({h}_0^2{\overline{T}}_0+2\varepsilon {h}_1{h}_0{\overline{T}}_0+\varepsilon {\overline{T}}_1{h}_0^2\right)\frac{\partial \overline{\rho}}{\partial \tau}\\ {}{E}_1={h}_0\frac{\partial \overline{\rho}}{\partial \theta}\left({h}_0{u}_0{T}_0+2\varepsilon {h}_1{u}_0{T}_0+\varepsilon {u}_1{h}_0{T}_0+\varepsilon {T}_1{u}_0{h}_0\right)\\ {}\kern1.1em +{h}_0\frac{\partial \overline{\rho}}{\partial \overline{z}}\left({h}_0{w}_0{T}_0+2\varepsilon {h}_1{w}_0{T}_0+\varepsilon {w}_1{h}_0{T}_0+\varepsilon {T}_1{w}_0{h}_0\right)\\ {}\kern1.4em +\varepsilon \overline{\rho}{h}_0\left(\begin{array}{c}\frac{\partial {h}_1}{\partial \theta }{u}_0{T}_0+\frac{\partial {u}_1}{\partial \theta }{h}_0{T}_0+\frac{\partial {T}_1}{\partial \theta }{h}_0{u}_0\\ {}+\frac{\partial {h}_1}{\partial \theta }{w}_0{T}_0+\frac{\partial {w}_1}{\partial \theta }{h}_0{T}_0+\frac{\partial {T}_1}{\partial \theta }{h}_0{w}_0\end{array}\right)\\ {}{E}_2=\varepsilon {T}_0{h}_1\left(\sigma \frac{\partial {p}_1}{\partial \tau }+{u}_0\frac{\partial {p}_1}{\partial \theta }+{w}_0\frac{\partial {p}_1}{\partial \overline{z}}\right)\\ {}{E}_3={k}_x\left({u}_0^2+2\varepsilon \left({u}_0{u}_1+{w}_0{w}_1\right)+{w}_0^2+\frac{1}{2}\left({u}_0+\varepsilon {u}_1\right)\varLambda \right)+{k}_r\left(\frac{1}{4}{\varLambda}^2-\left({u}_0+\varepsilon {u}_1\right)\varLambda \right)\end{array}} $$
(56)

Coefficients for (22):

$$ {\displaystyle \begin{array}{c}{E}_4={\overline{C}}_p{\operatorname{Re}}_s\frac{\partial \overline{\rho}}{\partial \tau }{h}_0{T}_0+{\overline{C}}_p{\operatorname{Re}}_p^{\ast}\left(\frac{\partial \overline{\rho}}{\partial \theta }{h}_0{u}_0{T}_0+\frac{\partial \overline{\rho}}{\partial \overline{z}}{h}_0{w}_0{T}_0\right)\\ {}{E}_5=\frac{\partial \overline{\rho}}{\partial \tau}\left({T}_0{h}_1+{h}_0{T}_1\right)+\overline{\rho}\frac{h_0\partial {T}_1+{T}_0\partial {h}_1}{\partial \tau}\\ {}{E}_6=\frac{\partial \overline{\rho}}{\partial \theta}\left({h}_0{u}_1{T}_0+{h}_0{u}_0{T}_1+{u}_0{T}_0{h}_1\right)+\overline{\rho}\frac{h_0{T}_0\partial {u}_1+{h}_0{u}_0\partial {T}_1+{u}_0{T}_0\partial {h}_1}{\partial \theta}\\ {}\kern1.6em +\frac{\partial \overline{\rho}}{\partial \overline{z}}\left({h}_0{w}_1{T}_0+{h}_0{w}_0{T}_1+{w}_0{T}_0{h}_1\right)+\overline{\rho}\frac{h_0{T}_0\partial {w}_1+{h}_0{w}_0\partial {T}_1+{w}_0{T}_0\partial {h}_1}{\partial \overline{z}}\\ {}{E}_7=\overline{\beta}{h_0}^2{T}_0\left(\sigma \frac{\partial {p}_1}{\partial \tau }+{u}_0\frac{\partial {p}_1}{\partial \theta }+{w}_0\frac{\partial {p}_1}{\partial \overline{z}}\right)+{h_0}^2\frac{\varLambda }{2}\cdot \frac{\partial {p}_1}{\partial \theta}\\ {}\kern1.2em +\overline{\mu}\left[{k}_x\left(\left(2{u}_0{u}_1+2{w}_0{w}_1\right)+\frac{1}{2}{u}_0{u}_1\varLambda \right)-{u}_1{k}_r\varLambda \right]\end{array}} $$
(57)

Coefficients for (40)–(41):

$$ {\displaystyle \begin{array}{c}{F}_1=\frac{\partial \overline{\rho}}{\partial \tau}\left(-{T}_0\frac{\underline{y}}{\varepsilon }+{h}_0{T}_{II1s}(z)\sin \varOmega t\right)+\overline{\rho}{h}_0\left({T}_{II1s}(z)\cdot \varOmega \cdot \cos \varOmega t\right)-{T}_0\frac{\underline {\overset{\cdot }{y}}\kern0.1em }{\varepsilon}\\ {}{F}_2=\frac{\partial \overline{\rho}}{\partial \theta}\left({h}_0\sin \varOmega t\left({T}_0{u}_{II1s}(z)+{u}_0{T}_{II1s}(z)\right)-{u}_0{T}_0\frac{\underline{y}\kern0.1em }{\varepsilon}\right)\\ {}\kern1.3em -\overline{\rho}{h}_0 cos\varOmega t\left({T}_0\cdot {u}_{II1c}(z)-{u}_0\cdot {T}_{II1c}(z)\right)+{u}_0{T}_0\overline{\rho}\frac{\underline{x}\left(\tau \right)\kern0.1em }{\varepsilon}\\ {}\kern1.1em +\frac{\partial \overline{\rho}}{\partial \overline{z}}\left({h}_0\sin \varOmega t\left({T}_0{w}_{1s}(z)+{w}_0{T}_{II1s}(z)\right)-{w}_0{T}_0\frac{\underline{y}}{\varepsilon}\right)\\ {}\kern0.9000001em +\overline{\rho}{h}_0\sin \varOmega t\left({T}_0\frac{\partial {p}_{1s}(z)}{\partial z}+{w}_0\frac{\partial {T}_{II1s}(z)}{\partial z}\right)-\overline{\rho}{w}_0{T}_0\frac{\partial \underline{y}}{\varepsilon \cdot \partial z}\\ {}{F}_3=\overline{\beta}{h_0}^2{T}_0\left(\sigma {p}_{1s}(z)\cdot \varOmega \cos \varOmega t+{w}_0\frac{\partial {p}_{1s}(z)}{\partial z}\sin \varOmega t\Big)\right)\\ {}\kern1.3em -\left({h_0}^2\frac{\varLambda }{2}+{u}_0\overline{\beta}{h_0}^2{T}_0\right){p}_{1c}(z)\cdot \cos \varOmega t\\ {}{F}_4=\overline{\beta}{h_0}^2{T}_0\left(\sigma {p}_{1s}(z)\cdot \varOmega \cos \varOmega t+{w}_0\frac{\partial {p}_{1s}(z)}{\partial z}\sin \varOmega t\Big)\right)\\ {}\kern1.4em -\left({h_0}^2\frac{\varLambda }{2}+{u}_0\overline{\beta}{h_0}^2{T}_0\right){p}_{1c}(z)\cdot \cos \varOmega t\end{array}} $$
(58)
$$ {\displaystyle \begin{array}{c}{F}_5=\frac{\partial \overline{\rho}}{\partial \tau}\left(-{T}_0\frac{\underline{x}}{\varepsilon }+{h}_0{T}_{II1c}(z)\cos \varOmega t\right)-\overline{\rho}{h}_0{T}_{II1\mathrm{c}}(z)\cdot \varOmega \cdot \sin \varOmega t-{T}_0\frac{\underline {\overset{\cdot }{x}}\kern0.1em }{\varepsilon}\\ {}{F}_6=\frac{\partial \overline{\rho}}{\partial \theta}\left({h}_0\cos \varOmega t\left({T}_0{u}_{II1c}(z)+{u}_0{T}_{II1c}(z)\right)-{u}_0{T}_0\frac{\underline{x}}{\varepsilon}\right)\\ {}+\overline{\rho}{h}_0\sin \varOmega t\left({T}_0\cdot {u}_{II1s}(z)\sin \varOmega t+{u}_0{T}_{II1s}(z)\right)-{u}_0{T}_0\overline{\rho}\frac{\underline{y}\kern0.1em }{\varepsilon}\\ {}\kern1em +\frac{\partial \overline{\rho}}{\partial \overline{z}}\left({h}_0\cos \varOmega t\left({T}_0\cdot {w}_{1c}(z)+{w}_0{T}_{II1c}(z)\right)-{w}_0{T}_0\frac{\underline{x}}{\varepsilon}\right)\\ {}\kern1em +\overline{\rho}{h}_0\cos \varOmega t\left({T}_0\frac{\partial {p}_{1c}(z)}{\partial z}+{w}_0\frac{\partial {T}_{II1c}(z)}{\partial z}\right)-\overline{\rho}{w}_0{T}_0\frac{\partial \underline{x}}{\varepsilon \cdot \partial z}\\ {}{F}_7=-\sigma {p}_{1c}(z)\cdot \varOmega \sin \varOmega t+{w}_0\frac{\partial {p}_{1c}(z)}{\partial z}\cos \varOmega \\ {}{F}_8=\left({h_0}^2\frac{\varLambda }{2}+{u}_0\overline{\beta}{h_0}^2{T}_0\right){p}_{1s}(z)\cdot \sin \varOmega t\\ {}{F}_9={k}_x\left(\left(2{u}_0+\frac{1}{2}{u}_0\varLambda \right){u}_{II1c}(z)+2{w}_0{w}_{1c}(z)\right)-{k}_r\varLambda {u}_{II1c}(z)\end{array}} $$
(59)

Derivation procedure from (24) and (26) to (36)–(39):

(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Wang, Y. Optimized design of thermal insulation and fluid drag reduction for circumferentially grooved annular seal with MMA and perturbation methods. Struct Multidisc Optim 62, 873–914 (2020). https://doi.org/10.1007/s00158-020-02529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02529-z

Keywords

Navigation