Skip to main content
Log in

A robust second-order surface reconstruction for shallow water flows with a discontinuous topography and a Manning friction

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A second-order surface reconstruction (SR) method for the shallow water equations with a discontinuous bottom topography and a Manning friction source term is presented. We redefine the water surface level at the cell interface by using the minimum difference between the bottom level and the original water surface level. The reconstructed water surface level is used to define the intermediate bottom level and the intermediate water height at the cell interface. We propose an explicit-implicit method to address the friction source term. The new second-order SR scheme together with the explicit-implicit method can preserve a special steady-state solution of the system and can maintain the positivity of the water depth. We also extend the new scheme to two-dimensional shallow water flows. To demonstrate the robustness and effectiveness of the new scheme, we use several classical numerical experiments for the shallow water flows over a complex bottom topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Saint-Venant: Théorie du mouvement non-permanent des eaux avec application aux crues des rivières et à i’introduction des mares dans leur lit., Comptes Rendus Hebdomadaires Des Séances De Lacadémie Des Sciences 73

  2. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56 (2), 267–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang, Q., Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 32(6), 873–884 (2009)

    Article  Google Scholar 

  4. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78(6), 355–383 (2015)

    Article  MathSciNet  Google Scholar 

  5. Michel-Dansac, V., Berthon, C., Clain, S., Foucher, F.: A well-balanced scheme for the shallow-water equations with topography or manning friction. J. Comput. Phys. 335, 115–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Steady state and sign preserving semi-implicit runge–kutta methods for odes with stiff damping term. SIAM J. Numer. Anal. 53(4), 2008–2029 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, J., Li, D.F.: A reliable second-order hydrostatic reconstruction for shallow water flows with the friction term and the bed source term, Journal of Computational and Applied Mathematics. In: Revision

  8. Gosse, L., Leroux, A. -Y.: A well-balanced scheme designed for inhomogeneous scalar conservation laws. Comptes Rendus De L Academie Des Sciences Serie I-mathematique 323(5), 543–546 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Greenberg, J.M., LeRoux, A. -Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  10. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, S.: A Steady-State Capturing Method For Hyperbolic Systems With Geometrical Source Terms. Springer, New York (2004)

    Book  MATH  Google Scholar 

  12. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. Siam J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bollermann, A., Noelle, S., Lukáčová-medvidová, M.: Finite volume evolution galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10(2), 371–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xing, Y., Shu, C.W.: A new approach of high order well-balanced finite volume weno schemes and discontinuous galerkin methods for a class of hyperbolic systems with source. Commun. Comput. Phys. 1(1), 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213(2), 474–499 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xing, Y., Zhang, X., Shu, C.W.: Positivity-preserving high order well-balanced discontinuous galerkin methods for the shallow water equations✩✩✩. Adv. Water Resour. 33(12), 1476–1493 (2010)

    Article  Google Scholar 

  17. Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme based on subcell reconstructions. Siam J. Numer. Anal. 55(2), 758–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sampson, J., Easton, A., Singh, M.: Moving boundary shallow water flow above parabolic bottom topography. Anziam J. 47, 373–387 (2006)

    Article  MathSciNet  Google Scholar 

  19. Buttinger-Kreuzhuber, A., Horváth, Z., Noelle, S., Blöschl, G., Waser, J.: A new second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Adv. Water Resour. 127, 89–108 (2019)

    Article  Google Scholar 

  20. de Luna, T.M., Díaz, M. J. C., Parés, C.: Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Appl. Math. Comput. 219(17), 9012–9032 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Dong, J., Li, D.F., Chen, G.: A new second-order modified hydrostatic reconstruction for the shallow water flows with a discontinuous topography, Applied Numerical Mathematics, In revision

  22. Dong, J., Li, D.F.: An efficient second-order modified hydrostatic reconstruction for the two-dimensional shallow water flows over complex topography, COMPUTERS & FLUIDS Under review

  23. Dong, J., Li, D.F.: An effect non-staggered central scheme based on new hydrostatic reconstruction. Appl. Math. Comput. 372, 124992 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Xia, X., Liang, Q., Ming, X., Hou, J.: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resour. Res. 53(5), 3730–3759 (2017)

    Article  Google Scholar 

  25. Lie, K.A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. Siam J. Sci. Comput. 24(4), 1157–1174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. Siam J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, S., Wen, X.: Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. Siam J. Sci. Comput. 26(6), 2079–2101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vanleer, B.: Towards the ultimate conservative difference scheme v second order sequel to godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  29. Harten, A., Lax, P.D., Leer, B.V.: On upstream differencing and godunov-type schemes for hyperbolic conservation laws. Siam Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1989)

    Article  MATH  Google Scholar 

  31. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78(6), 355–383 (2015)

    Article  MathSciNet  Google Scholar 

  32. Soares-FrazãO, S.: Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res. 45(sup1), 19–26 (2007)

    Article  MathSciNet  Google Scholar 

  33. Joe Sampson, M.S., Easton, A.: Moving boundary shallow water flow in parabolic bottom topography, Anziam Journal.

  34. Delestre, O., Cordier, S., Darboux, F., James, F.: A limitation of the hydrostatic reconstruction technique for shallow water equations. Comptes Rendus Mathematique 350(13-14), 677–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kawahara, M., Umetsu, T.: Finite element method for moving boundary problems in river flow. Int. J. Numer. Methods Fluids 6(6), 365–386 (2010)

    Article  MATH  Google Scholar 

  36. Song, L., Zhou, J., Li, Q., Yang, X., Zhang, Y.: An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography. Int. J. Numer. Methods Fluids 67(8), 960–980 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Briggs, M.J., Synolakis, C.E., Harkins, G.S., Green, D.R.: Laboratory experiments of tsunami runup on a circular island. Pure Appl. Geophys. 144(3-4), 569–593 (1995)

    Article  Google Scholar 

  38. Liu, X., Albright, J., Epshteyn, Y., Kurganov, A.: Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the saint-venant system. J. Comput. Phys. 374, 213–236 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nikolos, I.K., Delis, A.I.: An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography. Comput. Methods Appl. Mechan. Eng. 198(47), 3723–3750 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bradford, S.F., Sanders, B.F.: Finite-volume model for shallow-water flooding of arbitrary topography. J. Hydraul. Eng. 128(3), 289–298 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The author is indebted to Prof. Ding Fang Li for advices that both influenced the course of this research and improved its presentation.

Funding

This work was financially supported by the National Nature Science Foundation of China (51679143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Dong.

Additional information

Communicated by: Enrique Zuazua

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J. A robust second-order surface reconstruction for shallow water flows with a discontinuous topography and a Manning friction. Adv Comput Math 46, 35 (2020). https://doi.org/10.1007/s10444-020-09783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09783-1

Keywords

Mathematics Subject Classification (2010)

Navigation