Skip to main content
Log in

Noise sensitivity of the top eigenvector of a Wigner matrix

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We investigate the noise sensitivity of the top eigenvector of a Wigner matrix in the following sense. Let v be the top eigenvector of an \(N\times N\) Wigner matrix. Suppose that k randomly chosen entries of the matrix are resampled, resulting in another realization of the Wigner matrix with top eigenvector \(v^{[k]}\). We prove that, with high probability, when \(k \ll N^{5/3-o(1)}\), then v and \(v^{[k]}\) are almost collinear and when \(k\gg N^{5/3}\), then \(v^{[k]}\) is almost orthogonal to v.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, Volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and applications to percolation. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques 90(1), 5–43 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bourgade, P., Erdős, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y., Linial, N.: The influence of variables in product spaces. Isr. J. Math. 77(1–2), 55–64 (1992)

    Article  MathSciNet  Google Scholar 

  5. Chatterjee, S.: Concentration inequalities with exchangeable pairs (Ph. D. thesis). PhD thesis, Stanford University, (2005)

  6. Chatterjee, S.: Stein’s method for concentration inequalities. Probab. Theory Relat. Fields 138(1–2), 305–321 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chatterjee, S.: Superconcentration and Related Topics. Springer, Berlin (2016)

    MATH  Google Scholar 

  8. Erdős, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. Probab. Theory Relat. Fields 154(1–2), 341–407 (2012)

    Article  MathSciNet  Google Scholar 

  9. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  Google Scholar 

  10. Erdős, L., Schlein, B., Yau, H.T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287(2), 641–655 (2009)

    Article  MathSciNet  Google Scholar 

  11. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124, 2993–3002 (1996)

    Article  MathSciNet  Google Scholar 

  12. Garban, C.: Oded Schramm’s contributions to noise sensitivity. Ann. Probab. 39, 1702–1767 (2011)

    Article  MathSciNet  Google Scholar 

  13. Garban, C., Pete, G., Schramm, O.: The Fourier spectrum of critical percolation. Acta Math. 205, 19–104 (2010)

    Article  MathSciNet  Google Scholar 

  14. Garban, C., Steif, J.E.: Noise Sensitivity of Boolean Functions and Percolation. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  16. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Proceedings of the 29th Annual Symposium on the Foundations of Computer Science, pp. 68–80. Computer Society Press (1988)

  17. Kalai, G., Safra, S.: Threshold phenomena and influence. In: Percus, A.G., Istrate, G., Moore, C. (eds.) Computational Complexity and Statistical Physics. Oxford University Press, New-York (2006)

    MATH  Google Scholar 

  18. Knowles, A., Yin, J.: Eigenvector distribution of Wigner matrices. Probab. Theory Relat. Fields 155(3–4), 543–582 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ledoux, M., Rider, B.: Small deviations for beta ensembles. Electron. J. Probab. 15(41), 1319–1343 (2010)

    Article  MathSciNet  Google Scholar 

  20. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  21. Schramm, O., Steif, J.E.: Quantitative noise sensitivity and exceptional times for percolation. Ann. Math. 171, 619–672 (2010)

    Article  MathSciNet  Google Scholar 

  22. Talagrand, M.: On russo’s approximate zero-one law. Ann. Probab. 22, 1576–1587 (1994)

    Article  MathSciNet  Google Scholar 

  23. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298(2), 549–572 (2010)

    Article  MathSciNet  Google Scholar 

  24. Tracy, C.A., Widom, H.: Level-spacing distributions and the airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  MathSciNet  Google Scholar 

  25. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Jaehun Lee for pointing out a mistake in the proof of Lemma 3 in an early version of this paper. We also would like to thank the referees for their valuable reports. Funding was provided by Ministerio de Economía y Competitividad (Grant No. MTM2015-67304-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Zhivotovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gábor Lugosi was supported by the Spanish Ministry of Economy and Competitiveness, Grant PGC2018-101643-B-I00; “High-dimensional problems in structured probabilistic models—Ayudas Fundación BBVA a Equipos de Investigación Cientifica 2017”; and Google Focused Award “Algorithms and Learning for AI”. Charles Bordenave was supported by by the research grants ANR-14-CE25-0014 and ANR-16-CE40-0024-01. Nikita Zhivotovskiy was supported by RSF Grant No. 18-11-00132.

This work was prepared while Nikita Zhivotovskiy was a postdoctoral fellow at the department of Mathematics, Technion I.I.T. and researcher at National University Higher School of Economics. Now at Google Research, Brain Team.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordenave, C., Lugosi, G. & Zhivotovskiy, N. Noise sensitivity of the top eigenvector of a Wigner matrix. Probab. Theory Relat. Fields 177, 1103–1135 (2020). https://doi.org/10.1007/s00440-020-00970-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-020-00970-1

Mathematics Subject Classification

Navigation