Skip to main content
Log in

Corrosion of Multilayered TiAlSiN Films at 800–1000 °C in N2/0.1%H2S Gas

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A multilayered TiAlSiN thin film consisting of alternating nanocrystalline Ti(Si)N and Al(Si)N nanolayers was deposited on steel by arc ion plating. The film composition was 26Ti–16.3Al–1.2Si–56.50N in at%. The film was corroded at 800–1000 °C for 4–100 h in N2/0.1%H2S gas to study its corrosion behavior in hostile (H, S)-containing environments. The corrosion was primarily governed by oxidation, because oxides of Ti and Al were much more stable than the corresponding sulfides. The oxygen source for oxidation was impurity oxygen in N2/0.1%H2S gas. Initially, a superficial Al2O3 scale formed. Soon, the scale developed into the outer TiO2-rich layer and the inner Al2O3-rich layer, beneath which formed an oxygen affected zone. As corrosion progressed, Si tended to accumulate in the lower part of the inner Al2O3-rich layer owing to its thermodynamic nobility. Preferential oxidation of Al to Al2O3, formation of fine, dense Al2O3 and TiO2 grains in the oxide scale, and strong Ti–Si, Al–N and Ti–N bonds in the TiAlSiN film caused the scale to grow quite slowly and suppressed fast inward diffusion of sulfur and hydrogen as well as fast outward diffusion of Ti, Al, and Si. Therefore, the film displayed good corrosion resistance at 800–900 °C for up to 100 h. However, it corroded completely, with partial scale spallation and whisker growth at 1000 °C for 50 h.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Ichimura, A. Kawana, J. Mater. Res. 8, 1093 (1993)

    Article  CAS  Google Scholar 

  2. S.H. Yao, Y.L. Su, W.H. Kao, T.H. Liu, Tribol. Int. 39, 332 (2006)

    Article  CAS  Google Scholar 

  3. W.J. Cho, I.J. Shon, Korean J. Met. Mater. 56, 658 (2018)

    Article  CAS  Google Scholar 

  4. S.K. Kim, V. Van Le, Thin Solid Films 518, 7483 (2010)

    Article  CAS  Google Scholar 

  5. F. Pei, H.J. Liu, L. Chen, Y.X. Xu, Y. Du, J. Alloys Compd. 790, 909 (2019)

    Article  CAS  Google Scholar 

  6. H. Chen, B.C. Zheng, Y.G. Li, Z.L. Wu, M.K. Lei, Thin Solid Films 669, 377 (2019)

    Article  CAS  Google Scholar 

  7. F. Cao, P. Munroe, Z. Zhou, Z. Xie, Thin Solid Films 639, 137 (2017)

    Article  CAS  Google Scholar 

  8. O. Nakonechna, T. Cselle, M. Morstein, A. Karimi, Thin Solid Films 447, 406 (2004)

    Article  Google Scholar 

  9. L. Chen, S.Q. Wang, Y. Du, S.Z. Zhou, T. Gang, J.C. Fen, K.K. Chang, Y.W. Li, X. Xiong, Surf. Coat. Technol. 205, 582 (2010)

    Article  CAS  Google Scholar 

  10. Y.Y. Chang, H.M. Lai, Surf. Coat. Technol. 259, 152 (2014)

    Article  CAS  Google Scholar 

  11. W. Tillmann, M. Dildrop, Surf. Coat. Technol. 321, 448 (2017)

    Article  CAS  Google Scholar 

  12. X. Sui, G. Li, X. Qin, H. Yu, X. Zhou, K. Wang, Q. Wang, Ceram. Int. 42, 7524 (2016)

    Article  CAS  Google Scholar 

  13. C.L. Chang, J.W. Lee, M.D. Tseng, Thin Solid Films 517, 5231 (2009)

    Article  CAS  Google Scholar 

  14. H.C. Barshilia, M. Ghosh, Shashidhara, R. Ramakrishna, K.S. Rajam, Appl. Surf. Sci. 256, 6420 (2010)

    Article  CAS  Google Scholar 

  15. Y.Y. Chang, S.M. Yang, Thin Solid Films 518, s34 (2010)

    Article  CAS  Google Scholar 

  16. L. Zhu, M. Hu, W. Ni, Y. Liu, Vacuum 86, 1795 (2012)

    Article  CAS  Google Scholar 

  17. Z.W. Xie, L.P. Wang, X.F. Wang, L. Huang, Y. Lu, J.C. Yan, Nucl. Instrum. Methods B 271, 1 (2012)

    Article  CAS  Google Scholar 

  18. S. Zhang, F. Cai, M. Li, Surf. Coat. Technol. 206, 3572 (2012)

    Article  CAS  Google Scholar 

  19. L. Xin, Q. Chen, Y. Teng, W. Wang, A. Sun, S. Zhu, F. Wang, Surf. Coat. Technol. 228, 48 (2013)

    Article  CAS  Google Scholar 

  20. C. Feng, M. Li, L. Xin, S. Zhu, Z. Shao, Q. Zhao, F. Wang, Surf. Coat. Technol. 232, 88 (2013)

    Article  CAS  Google Scholar 

  21. T. Chen, Z. Xie, F. Gong, Z. Luo, Z. Yang, Appl. Surf. Sci. 314, 735 (2014)

    Article  CAS  Google Scholar 

  22. S.H. Bak, D.B. Lee, Oxid. Met. 84, 345 (2015)

    Article  CAS  Google Scholar 

  23. M. Parlinska-Wojtan, Thin Solid Films 616, 437 (2016)

    Article  CAS  Google Scholar 

  24. J.H. Lee, H.K. Park, J.H. Jang, I.H. Oh, Met. Mater. Int. 25, 268 (2019)

    Article  CAS  Google Scholar 

  25. G.Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, Cleveland, 1990), pp. 201–234

    Google Scholar 

  26. N.J. Simms, J.F. Norton, T.M. Lowe, J. Phys. IV 3, 807 (1993)

    CAS  Google Scholar 

  27. R. John, in Shreir’s Corrosion, vol. 1, 4th edn., ed. by R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Elsevier, London, 2010), pp. 240–271

    Chapter  Google Scholar 

  28. Y. Feng, J. Wen, Y. Hu, B. Wu, M. Wua, J. Mi, Chem. Eng. J. 326, 1255 (2017)

    Article  CAS  Google Scholar 

  29. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd edn., (Cambridge University Press, Cambridge, 2006), pp. 195–197. 62, 63–204

  30. E. Godlewska, Mater. Corros. 48, 687 (1997)

    Article  CAS  Google Scholar 

  31. M.G. Hebsur, Appl. Energy 15, 99 (1983)

    Article  CAS  Google Scholar 

  32. M.W. Brumm, H.J. Grabke, Corros. Sci. 33, 1677 (1992)

    Article  CAS  Google Scholar 

  33. P. Kofstad, J. Less-Common Met. 12, 449 (1967)

    Article  CAS  Google Scholar 

  34. S. Mrowec, M. Zastawnik, J. Phys. Chem. Solids 27, 1027 (1966)

    Article  CAS  Google Scholar 

  35. Y.J. Kim, P. Yadav, J. Hahn, X. Xiao, D.B. Lee, Met. Mater. Int. 25, 627 (2019)

    Article  CAS  Google Scholar 

  36. I. Barin, Thermochemical Data of Pure Substances (VCH, Germany, 1989)

    Google Scholar 

  37. A. Rahmel, P.J. Spencer, Oxid. Met. 35, 53 (1991)

    Article  CAS  Google Scholar 

  38. A. Vennemann, H.R. Stock, J. Kohlscheen, S. Rambadt, G. Erkens, Surf. Coat. Technol. 174, 408 (2003)

    Article  Google Scholar 

  39. M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer, M. Kathrein, Surf. Coat. Technol. 203, 3104 (2009)

    Article  CAS  Google Scholar 

  40. H. Holleck, V. Schier, Surf. Coat. Technol. 76, 328 (1995)

    Article  Google Scholar 

  41. Y.M. Chiang, D.P. Birnie III, W.D. Kingery, Physical Ceramics (Wiley, New York, 1996), p. 109

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council of Science and Technology (NST) Grant by the Korea government (MSIT) (No. CRC-15-07-KIER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Bok Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, J., Abro, M.A., Xiao, X. et al. Corrosion of Multilayered TiAlSiN Films at 800–1000 °C in N2/0.1%H2S Gas. Met. Mater. Int. 27, 3260–3268 (2021). https://doi.org/10.1007/s12540-020-00665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00665-1

Keywords

Navigation