We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Electronic Transport and Non-linear Optical Properties of Hexathiopentacene (HTP) Nanorings: A DFT Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The electronic structure and structural and optoelectronic properties of hexathiopentacene (HTP) nanorings have been carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT). Herein, the binding energy per atom, ionization potential, electron affinity, chemical hardness, highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap, refractive index, charge distributions, absorbance spectra and non-linear optical properties have been measured. The calculations on these nanorings show that the HOMO–LUMO gaps range from 1.87 eV to 1.28 eV, which corresponds to the bandgap of known photovoltaic semiconductors, while the absorbance spectrum increases from 674 nm (1.84 eV) to 874 nm (1.42 eV), which indicates that the HTP nanorings absorb more light as the nanoring size is increased. From the binding energy, the stability of the HTP nanorings is higher than that of the HTP structure. Our results show that an increase in the size may play a significant role in improving the design of optoelectronic devices based upon these HTP nanorings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Q. Tu, Z. Yin, Y. Ma, S.-C. Chen, and Q. Zheng, Dye Pigment 149, 747 (2018).

    Article  CAS  Google Scholar 

  2. C. Xie, P. You, Z. Liu, L. Li, and F. Yan, Light. Appl. 6, e17023 (2017).

    Article  Google Scholar 

  3. W. Lee, J. Choi, and J.W. Jung, Dye Pigment 161, 283 (2019).

    Article  CAS  Google Scholar 

  4. A. De Sio and C. Lienau, Phys. Chem. Chem. Phys. 19, 18813 (2017).

    Article  Google Scholar 

  5. A.M. Nawar and M.M. Makhlouf, J. Electron. Mater. 48, 5771 (2019).

    Article  CAS  Google Scholar 

  6. K. Xu, S. Hu, J. Hu, and X. Wang, J. Electron. Mater. 48, 838 (2019).

    Article  CAS  Google Scholar 

  7. J.B. Wang, W.L. Li, B. Chu, C.S. Lee, Z.S. Su, G. Zhang, S.H. Wu, and F. Yan, Org. Electron. 12, 34 (2011).

    Article  CAS  Google Scholar 

  8. F. Aziz, M.H. Sayyad, K. Sulaiman, B.H. Majlis, K.S. Karimov, Z. Ahmad, and G. Sugandi, Meas. Sci. Technol. 23, 014001 (2012).

    Article  CAS  Google Scholar 

  9. M. Murugavelu, P.K.M. Imran, K.R. Sankaran, and S. Nagarajan, Mater. Sci. Semicond. Process. 16, 461 (2013).

    Article  CAS  Google Scholar 

  10. R.N. Gillanders, I.D.W. Samuel, and G.A. Turnbull, Sens. Actuat. B Chem. 245, 334 (2017).

    Article  CAS  Google Scholar 

  11. Y. Huang, R. Yuan, and S. Zhou, J. Mater. Chem. 22, 883 (2012).

    Article  CAS  Google Scholar 

  12. M.E. Harb, S. Ebrahim, M. Soliman, and M. Shabana, J. Electron. Mater. 47, 353 (2018).

    Article  CAS  Google Scholar 

  13. H. Jiang, X.-N. Hu, Y.-C. Zhao, and C. Zhang, J. Electron. Mater. 46, 1005 (2017).

    Article  CAS  Google Scholar 

  14. B.M. Wong and A.M. Morales, J. Phys. D Appl. Phys. 42, 055151 (2009).

    Article  Google Scholar 

  15. X. Zhou, T. Zifer, B.M. Wong, K.L. Krafcik, F. Leonard, and A.L. Vance, Nano Lett. 9, 1028 (2009).

    Article  CAS  Google Scholar 

  16. B.M. Wong, F. Leonard, Q. Li, and G.T. Wang, Nano Lett. 11, 3074 (2011).

    Article  CAS  Google Scholar 

  17. R. Jasti, J. Bhattacharjee, J.B. Neaton, and C.R. Bertozzi, J. Am. Chem. Soc. 130, 17646 (2008).

    Article  CAS  Google Scholar 

  18. J. Xia, J.W. Bacon, and R. Jasti, Chem. Sci. 3, 3018 (2012).

    Article  CAS  Google Scholar 

  19. D.J. Cram and J.M. Cram, Acc. Chem. Res. 4, 204 (1971).

    Article  CAS  Google Scholar 

  20. U. Girreser, D. Giuffrida, F.H. Kohnke, J.P. Mathias, D. Philp, and J.F. Stoddart, Pure Appl. Chem. 65, 119 (1993).

    Article  CAS  Google Scholar 

  21. L.T. Scott, Angew. Chem. Int. Ed. 42, 4133 (2003).

    Article  CAS  Google Scholar 

  22. K. Tahara and Y. Tobe, Chem. Rev. 106, 5274 (2006).

    Article  CAS  Google Scholar 

  23. T. Kawase and H. Kurata, Chem. Rev. 106, 5250 (2006).

    Article  CAS  Google Scholar 

  24. R. Jasti and C.R. Bertozzi, Chem. Phys. Lett. 494, 1 (2010).

    Article  CAS  Google Scholar 

  25. M. Fujitsuka, D.W. Cho, T. Iwamoto, S. Yamago, and T. Majima, Phys. Chem. Chem. Phys. 14, 14585 (2012).

    Article  CAS  Google Scholar 

  26. M. Fujitsuka, C. Lu, T. Iwamoto, E. Kayahara, S. Yamago, and T. Majima, J. Phys. Chem. A 118, 4527 (2014).

    Article  CAS  Google Scholar 

  27. H. Omachi, Y. Segawa, and K. Itami, Org. Lett. 13, 2480 (2011).

    Article  CAS  Google Scholar 

  28. H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, and K. Itami, Angew. Chem. Int. Ed. 48, 6112 (2009).

    Article  CAS  Google Scholar 

  29. S. Yamago, Y. Watanabe, and T. Iwamoto, Angew. Chem. Int. Ed. 49, 757 (2010).

    Article  CAS  Google Scholar 

  30. J.E. Mcmurry, G.J. Haley, J.R. Matz, J.C. Clardy, and J. Mitchell, J. Am. Chem. Soc. 108, 515 (1986).

    Article  CAS  Google Scholar 

  31. V. Sgobba and D.M. Guldi, Chem. Soc. Rev. 38, 165 (2009).

    Article  CAS  Google Scholar 

  32. S. Hitosugi, T. Yamasaki, and H. Isobe, J. Am. Chem. Soc. 134, 12442 (2012).

    Article  CAS  Google Scholar 

  33. Y. Yamamoto, E. Tsurumaki, K. Wakamatsu, and S. Toyota, Angew. Chemie Int. Ed. 57, 8199 (2018).

    Article  CAS  Google Scholar 

  34. P. Lutsyk and Y. Vertsimakha, Mol. Cryst. Liq. Cryst. 426, 265 (2005).

    Article  CAS  Google Scholar 

  35. B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).

    Article  CAS  Google Scholar 

  36. B. Szucs, Z. Hajnal, R. Scholz, S. Sanna, and T. Frauenheim, Appl. Surf. Sci. 234, 173 (2004).

    Article  CAS  Google Scholar 

  37. B. Szucs, Z. Hajnal, T. Frauenheim, C. Gonzalez, J. Ortega, R. Perez, and F. Flores, Appl. Surf. Sci. 212, 861 (2003).

    Google Scholar 

  38. A.D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  CAS  Google Scholar 

  39. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  40. T. Yanai, D.P. Tew, and N.C. Handy, Chem. Phys. Lett. 393, 51 (2004).

    Article  CAS  Google Scholar 

  41. M. Kurban, B. Gündüz, and F. Göktaş, Optik (Stuttg). 182, 611 (2019).

    Article  CAS  Google Scholar 

  42. I. Muz and M. Kurban, J. Alloys Compd. 802, 25 (2019).

    Article  CAS  Google Scholar 

  43. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc., Wallingford CT (2009).

  44. Y. Vertsimakha and P. Lutsyk, Mol. Cryst. Liq. Cryst. 467, 107 (2007).

    Article  CAS  Google Scholar 

  45. Y. Saleem, L.N. Baldo, A. Delgado, L. Szulakowska, and P. Hawrylak, J. Phys. Condens. Mater. 31, 305503 (2019).

    Article  CAS  Google Scholar 

  46. A.D. Gueclue, P. Potasz, and P. Hawrylak, Phys. Rev. B 82, 1 (2010).

    Google Scholar 

  47. N.M. Ravindra, S. Auluck, and V.K. Srivastava, Phys. Status Solidi B 93, K155 (1979).

    Article  CAS  Google Scholar 

  48. R.G. Parr and W.T. Yang, J. Am. Chem. Soc. 106, 4049 (1984).

    Article  CAS  Google Scholar 

  49. R.G. Parr and R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  50. R.G. Pearson, J. Chem. Sci. 117, 369 (2005).

    Article  CAS  Google Scholar 

  51. R.G. Pearson, Acc. Chem. Res. 26, 250 (1993).

    Article  CAS  Google Scholar 

  52. R.G. Parr, L. Von Szentpaly, and S.B. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  53. J.L. Gazquez, A. Cedillo, and A. Vela, J. Phys. Chem. A 111, 1966 (2007).

    Article  CAS  Google Scholar 

  54. M.V.S. Prasad, N.U. Sri, and V. Veeraiah, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 163 (2015).

    Article  CAS  Google Scholar 

  55. X. Zhang, M. Li, Z. Shi, and Z. Cui, Mater. Lett. 65, 1404 (2011).

    Article  CAS  Google Scholar 

  56. D. Sajan, H. Joe, V.S. Jayakumar, and J. Zaleski, J. Mol. Struct. 785, 43 (2006).

    Article  CAS  Google Scholar 

  57. Y.-X. Sun, Q.-L. Hao, Z.-X. Yu, W.-X. Wei, L.-D. Lu, and X. Wang, Mol. Phys. 107, 223 (2009).

    Article  CAS  Google Scholar 

  58. N. Sundaraganesan, E. Kavitha, S. Sebastian, J.P. Cornard, and M. Martel, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 74, 788 (2009).

    Article  CAS  Google Scholar 

  59. M.D.H. Bhuiyan, M. Ashraf, A. Teshome, G.J. Gainsford, A.J. Kay, I. Asselberghs, and K. Clays, Dye Pigment 89, 177 (2011).

    Article  CAS  Google Scholar 

  60. M.E. Foster and B.M. Wong, J. Chem. Theory Comput. 8, 2682 (2012).

    Article  CAS  Google Scholar 

  61. S.K. Dutta, S.K. Mehetor, and N. Pradhan, J. Phys. Chem. Lett. 6, 936 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The numerical calculations were also partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Centre (TRUBA resources), Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kurban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muz, İ., Kurban, M. Electronic Transport and Non-linear Optical Properties of Hexathiopentacene (HTP) Nanorings: A DFT Study. J. Electron. Mater. 49, 3282–3289 (2020). https://doi.org/10.1007/s11664-020-08017-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08017-w

Keywords

Navigation