Skip to main content
Log in

Animal Hair-Based Triboelectric Nanogenerator (TENG): A Substitute for the Positive Polymer Layer in TENG

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A triboelectric nanogenerator (TENG) is a sustainable solution for the development of smart battery-less devices. It is clean, pollution-free, and cost-effective. Various studies have investigated the fabrication of TENGs using different materials. Biomaterials have great potential in this area. Hair, a natural biomaterial, is made of keratinized proteins having different chains of amino acids. These amino acids act as an active layer for the TENG. In this investigation, animal hair is used to fabricate an active layer of a TENG. This layer is tested with active layers of different biomaterials including egg shell membrane and cellulose from different sources (Bombax ceiba tree cotton, tissue paper cellulose), synthetic materials including Teflon (polytetrafluoroethylene—PTFE) and zinc oxide (ZnO), and metals including copper (Cu) and aluminium (Al). The TENG generated 200 volts peak-to-peak voltage using dog hairs and a PTFE combination. A series combination of 124 light-emitting diodes was also lighted with this TENG. Finally, a smart device was powered using this combination. This work provides a basis for further research using different biomaterials for TENG fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.R. Fan, Z.Q. Tian, and Z.L. Wang, Nano Energy 1, 328 (2012).

    Article  CAS  Google Scholar 

  2. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, and Z.L. Wang, Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  3. S. Wang, L. Lin, and Z. Lin, Nano Energy 11, 436 (2015).

    Article  CAS  Google Scholar 

  4. L. Meng, Q. Xu, L.I. Dan, and X. Wang, J. Electron. Mater. 48, 7411 (2019).

    Article  CAS  Google Scholar 

  5. S.K. Karan, S. Maiti, O. Kwon, S. Paria, A. Maitra, S.K. Si, Y. Kim, J.K. Kim, and B.B. Khatua, Nano Energy 49, 655 (2018).

  6. M.R. Harkey, Forensic Sci. Int. 63, 9 (1993).

    Article  CAS  Google Scholar 

  7. E.N. Jayaweera, K.R. Wijewardhana, T.K. Ekanayaka, A. Shahzad, and J.K. Song, and ACS. Sustain. Chem. Eng. 6, 6321 (2018).

    CAS  Google Scholar 

  8. G. P. Tan and J. J. P. Bautista, IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON 2018-Octob, 2297 (2019).

  9. S.V. Kshirsagar, B. Singh, and S.P. Fulari, Indian J. Forensic Med. Pathol. 2, 105 (2009).

    Google Scholar 

  10. M. Sharma, M. Sharma, and V.M. Rao, Afr. J. Biochem. Res. 5, 1 (2011).

    Google Scholar 

  11. Y.P. Jeon, J.H. Park, and T.W. Kim, Appl. Surf. Sci. 445, 50 (2018).

    Article  CAS  Google Scholar 

  12. S. He, Y. Guo, R. Guo, X. Fu, L. Guan, and H. Liu, J. Electron. Mater. 48, 2886 (2019).

    Article  CAS  Google Scholar 

  13. S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, and Z.L. Wang, Energy Environ. Sci. 6, 3576 (2013).

    Article  Google Scholar 

  14. K.S. Kim and H.K. Park, Ski. Res. Technol. 19, 1 (2013).

    Article  CAS  Google Scholar 

  15. P. Garidel and H. Schott, BioProcess Tech. 4, 40 (2006).

    CAS  Google Scholar 

  16. K.L.A. Chan, S.G. Kazarian, A. Mavraki, and D.R. Williams, Appl. Spectrosc. 59, 149 (2005).

    Article  CAS  Google Scholar 

  17. J. Mihály, S. Sterkel, H.M. Ortner, L. Kocsis, L. Hajba, É. Furdyga, and J. Minka, Croat. Chem. Acta 79, 497 (2006).

    Google Scholar 

  18. M. Seol, S. Kim, Y. Cho, K.E. Byun, H. Kim, J. Kim, S.K. Kim, S.W. Kim, H.J. Shin, and S. Park, Adv. Mater. 30, 1 (2018).

    Google Scholar 

  19. H. Fang, Q. Li, W. He, J. Li, Q. Xue, C. Xu, L. Zhang, T. Ren, G. Dong, H.L.W. Chan, J. Dai, and Q. Yan, Nanoscale 7, 17306 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maninder Singh or Harminder Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 3385 kb)

Supplementary material 2 (MP4 6509 kb)

Supplementary material 3 (MP4 4169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Sheetal, A., Singh, H. et al. Animal Hair-Based Triboelectric Nanogenerator (TENG): A Substitute for the Positive Polymer Layer in TENG. J. Electron. Mater. 49, 3409–3416 (2020). https://doi.org/10.1007/s11664-020-08031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08031-y

Keywords

Navigation