Skip to main content

Advertisement

Log in

Hybrid-Halide Perovskite Thin Film Growth for Thermoelectric Applications

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric effect can convert thermal energy into electricity without any moving parts or vibrations in light or dark. These can be promising advantages to develop sustainable energy source for internet of things devices. In this regards, thin films of hybrid-halide perovskites, methylamonium tin iodide, were fabricated by spin coating technique on a glass substrate at different annealing times. Thin films were structurally and chemically characterized by x-ray diffraction pattern and a scanning electron microscope. Thermoelectric parameters were measured near room temperature. During optimization, thin films annealed for 5 min at 100°C shows the high performance with electrical conductivity 3.56 S/cm, Seebeck coefficient 66.03 μV/K and power factor of 1.55 μW/m K2 at 50°C. Thermoelectric performance from these hybrid-halide perovskite will help for further development of direct thermal energy harvesting devices near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haras and T. Skotnicki, Nano Energy 54, 461 (2018).

    Article  CAS  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  4. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc 131, 6050 (2009).

    Article  CAS  Google Scholar 

  5. Z. Guo, S.J. Yoon, J.S. Manser, P.V. Kamat, and T. Luo, J. Phys. Chem. C 120, 6394 (2016).

    Article  CAS  Google Scholar 

  6. A. Pisoni, J. Jacimovic, O.S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, J. Phys. Chem. Lett. 5, 2488 (2014).

    Article  CAS  Google Scholar 

  7. X. Qian, X. Gu, and R. Yang, Appl. Phys. Lett. 108, 063902 (2016).

    Article  Google Scholar 

  8. S.-Y. Yue, X. Zhang, G. Qin, J. Yang, and M. Hu, Phys. Rev. B 94, 115427 (2016).

    Article  Google Scholar 

  9. W. Lee, H. Li, A. B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, E. Lin, J. J. Urban, J. C. Grossman, et al., Proc. Natl. Acad. Sci. 114(33), 8693 (2017).

  10. T. Hata, G. Giorgi, and K. Yamashita, Nano Lett. 16, 2749 (2016).

    Article  CAS  Google Scholar 

  11. T. Ye, X. Wang, X. Li, A.Q. Yan, S. Ramakrishna, and J. Xu, J. Mater. Chem. C 5, 1255 (2017).

    Article  CAS  Google Scholar 

  12. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 3061 (2014).

    Article  CAS  Google Scholar 

  13. A.K. Baranwal, S. Saini, Z. Wang, D. Hirotani, T. Yabuki, S. Iikubo, K. Miyazaki, and S. Hayase, Org. Electron. 76, 105488 (2020).

    Article  CAS  Google Scholar 

  14. S. Saini, A.K. Baranwal, T. Yabuki, S. Hayase, and K. Miyazaki, MRS Adv. 4, 1719 (2019).

    Article  CAS  Google Scholar 

  15. Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, and X. Tao, Angew. Chem. 55, 3447 (2016).

    Article  CAS  Google Scholar 

  16. J. Makinson, J. Lee, S. Magner, R. De Angelis, W. Weins, and A. Hieronymus, Adv. X-Ray Anal. 42, 407 (2000).

    CAS  Google Scholar 

  17. B.J. Foley, J. Girard, B.A. Sorenson, A.Z. Chen, J.S. Niezgoda, M.R. Alpert, A.F. Harper, D.M. Smilgies, P. Clancy, W.A. Saidi, and J.J. Choi, J. Mater. Chem. A 5, 113 (2017).

    Article  CAS  Google Scholar 

  18. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Adv. Funct. Mater. 24, 3250 (2014).

    Article  CAS  Google Scholar 

  19. A.K. Baranwal, S. Saini, Z. Wang, K. Hamada, D. Hirotani, K. Nishimura, M.A. Kamarudin, G. Kapil, T. Yabuki, S. Iikubo, Q. Shen, K. Miyazaki, and S. Hayase, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07846-8.

  20. T.-B. Song, T. Yokoyama, J. Logsdon, M.R. Wasielewski, S. Aramaki, M.G. Kanatzidis, and A.C.S. Appl, Energy Mater. 1, 4221 (2018).

    CAS  Google Scholar 

  21. S.-Z. Kure-Chu, A. Satoh, S. Miura, M. Mizuhashi, and H. Yashiro, J. Electrochem. Soc. 162, D305 (2015).

    Article  CAS  Google Scholar 

  22. Q. Liu, Y.-C. Hsiao, M. Ahmadi, T. Wu, L. Liu, S. Haacke, H. Wang, and B. Hu, Org. Electron. 35, 216 (2016).

    Article  CAS  Google Scholar 

  23. X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jacimovic, B. Nafradi, M. Spina, D. Pavuna, L. Forro, and E. Horvath, J. Phys. Chem. C 119, 11506 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by JST-CREST, JPMJCR17I4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikant Saini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Baranwal, A.K., Yabuki, T. et al. Hybrid-Halide Perovskite Thin Film Growth for Thermoelectric Applications. J. Electron. Mater. 49, 2890–2894 (2020). https://doi.org/10.1007/s11664-020-07958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07958-6

Keywords

Navigation