Skip to main content

Advertisement

Log in

Electrocatalytic Activation of a DSSC Graphite Composite Counter Electrode Using In Situ Polymerization of Aniline in a Water/Ethanol Dispersion of Reduced Graphene Oxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Major drawbacks of a Pt-free counter electrode in dye-sensitized solar cells (DSSCs) are low electrical conductivity and low electrocatalytic activity. One of the promising materials for use in the counter electrode in DSSCs is graphite. It is well-known that graphite provides notable electrical conductivity, but has low electrocatalytic activity. Therefore, the surface of the graphite electrode has to be covered by an electrocatalytically active material. The presence of an electrocatalytically active layer will facilitate charge transfer at the electrode–electrolyte interface. In this report, we demonstrate the combination of reduced graphene oxide (rGO) and polyaniline (PANI) to enhance the electrocatalytic activity of a graphite counter electrode. rGO is synthesized from graphite using the sonication–oxidation method followed by reduction using ascorbic acid. This technique produced two types of rGO: floated and precipitated rGOs. PANI was grown on the surfaces of dispersed rGO in a water/ethanol system using an in situ polymerization technique. This technique resulted in both low-conductivity PANI–floated rGO (PANI–FrGO) and high-conductivity PANI–precipitated rGO (PANI–PrGO). In the composite electrode, rGO acts as a bridge between the graphite surface, and polyaniline acts as the electrocatalytically active material. The highest photovoltaic performance was obtained for a cell using the graphite/PANI–PrGO composite counter electrode. This cell gives an optimal open-circuit voltage (Voc), fill factor (FF), overall conversion efficiency (η), and short-circuit current density (Jsc) of 0.66 V, 0.508, 1.83% and 4.899 mA/cm2, respectively. Measurement of photovoltaic performance was carried out under 100 mW cm−2 of air mass (AM) 1.5 illumination. The contribution of PANI–rGO on the graphite composite counter electrode was demonstrated to enhance photovoltaic performance that opens an alternative route for the low-cost fabrication of Pt-free DSSC counter electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. West, in Proceedings of Vogel Centennial Symposium (1974), p. 35.

  2. H. Tributsch and H. Gerischer, Ber. Bunsen. Phys. Chem. 73, 251 (1969).

    CAS  Google Scholar 

  3. S. Namba and Y. Hishiki, J. Phys. Chem. 69, 774 (1965).

    Article  CAS  Google Scholar 

  4. H. Gerischer, M.E. Michel-Beyerle, F. Rebentrost, and H. Tributsch, Electrochim. Acta 13, 1509 (1968).

    Article  CAS  Google Scholar 

  5. H. Gerischer and J. Goblecht, Berichte der Bunsen-gesellschaft. 80, 327 (1976).

    Article  CAS  Google Scholar 

  6. M.T. Spitler and M. Calvin, J. Chem. Phys. 66, 4294 (1977).

    Article  CAS  Google Scholar 

  7. M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, and H. Yanagida, Short Commun. 87, 169 (1979).

    CAS  Google Scholar 

  8. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  9. M. Janani, P. Srikrishnarka, S.V. Nair, and A.S. Nair, J. Mater. Chem. A 3, 17914 (2015).

    Article  CAS  Google Scholar 

  10. E. Singh and H.S. Nalwa, Sci. Adv. Mater. 7, 1863 (2015).

    Article  CAS  Google Scholar 

  11. J.D. Roy-Mayhew and I.A. Aksay, Chem. Rev. 114, 6323 (2014).

    Article  CAS  Google Scholar 

  12. K.S. Lee, H.K. Lee, D.H. Wang, N.G. Park, J.Y. Lee, O.O. Park, and J.H. Park, Chem. Commun. 46, 4505 (2010).

    Article  CAS  Google Scholar 

  13. S. Shalini, R.S. Prabhu, S. Prasanna, T.K. Mallick, and S. Senthilarasu, Renew. Sustain Energy Rev. 51, 1306 (2015).

    Article  CAS  Google Scholar 

  14. S. Casaluci, M. Gemmi, V. Pellegrini, A.D. Carlo, and F. Bonaccorso, Nanoscale 8, 5368 (2016).

    Article  CAS  Google Scholar 

  15. G. Veerappan, K. Bojan, and S.W. Rhee, ACS Appl. Mater. Interfaces 3, 857 (2011).

    Article  CAS  Google Scholar 

  16. N. Sofyan, R.A. Nugraha, A. Ridhova, A.H. Yuwono, and A. Udhiarto, IJE Trans. A Basics 51, 1741 (2018).

    Google Scholar 

  17. S. Konwer, J.P. Gogoi, A. Kalita, and S.K. Dolui, J. Mater. Sci. Mater. Electron. 22, 1154 (2011).

    Article  CAS  Google Scholar 

  18. B. He, Q. Tang, M. Wang, H. Chen, and S. Yuan, ACS Appl. Mater. Interfaces 6, 8230 (2014).

    Article  CAS  Google Scholar 

  19. Shruthi, K.M. Vignesha, Sandya, D.N. Sangeetha, and M. Selvakumar, Surf. Eng. Appl. Electrochem. 54, 359 (2018).

    Article  Google Scholar 

  20. Z.A. Boeva and V.G. Sergeyev, Polym. Sci. Ser. C 56, 144 (2014).

    Article  CAS  Google Scholar 

  21. J. Huang, Pure Appl. Chem. 78, 15 (2006).

    Article  CAS  Google Scholar 

  22. H. Niu, S. Zhang, Q. Ma, S. Qin, L. Wan, J. Xu, and S. Miao, RSC Adv. 3, 17228 (2013).

    Article  CAS  Google Scholar 

  23. W. Sun, Y. Liu, S. Xu, J. Yuan, S. Guo, and X.-Z. Zhao, J. Mater. Chem. A 1, 2762 (2013).

    Article  CAS  Google Scholar 

  24. V.H. Nguyen, C. Lamiel, D. Kharismadewi, V.C. Tran, and S. Jae-Jin, J. Electroanal. Chem. 758, 148 (2015).

    Article  CAS  Google Scholar 

  25. A.M. Solonaru and M. Erigoras, Express Polym Lett. II 2, 127 (2017).

    Article  Google Scholar 

  26. G. Wang, S. Zhuo, and W. Xing, Mater. Letter. 69, 27 (2012).

    Article  CAS  Google Scholar 

  27. Y. Li and Y. Zheng, J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.46103.

    Article  Google Scholar 

  28. G.H. Jeong, S.J. Kim, E.M. Han, and K.H. Park, Mol. Cryst. Liq. Cryst. 620, 112 (2015).

    Article  CAS  Google Scholar 

  29. S. Abdolhosseinzadeh, H. Asgharzahed, and S.P. Kim, Nature 5, 1 (2015).

    Google Scholar 

  30. M. Mitra, C. Kulsi, K. Chatterjee, K.K.S. Ganguly, D. Banerjee, and S. Goswami, RSC Adv. 5, 31039 (2015).

    Article  CAS  Google Scholar 

  31. L. Li, Abdul-Rahman, O. Raji, H. Fei, Y. Yang, E.L.G. Samuel, and J.M. Tour, ACS. Appl. Mater. Interfaces (2013). https://doi.org/10.1021/am4013165.

  32. F. Yilmaz, Polyaniline Synthesis, Characterization, Solution Properties and Composites. Thesis, Middle East Technical University, (2007), pp. 81–82.

  33. E. Dmitrieva, Y. Harima, and L. Dunsch, J. Phys. Chem. B. 113, 16131 (2009).

    Article  CAS  Google Scholar 

  34. A. Kellenberger, E. Dmitrieva, and L. Dunsch, Phys. Chem. Chem. Phys. 13, 3411 (2011).

    Article  CAS  Google Scholar 

  35. R. Singh, V. Arora, R.P. Tandon, S. Chandra, and A. Mansingh, J. Mater. Sci. 33, 2067 (1998).

    Article  CAS  Google Scholar 

  36. A. Watanabe, K. Mori, Y. Iwasaki, and Y. Nakamura, Macromolecules 20, 1793 (1987).

    Article  CAS  Google Scholar 

  37. F.A. Castro and C.F.O. Graeff, J. Appl. Phys. 110, 083903 (2007).

    Article  Google Scholar 

  38. O.E. Bogomolova and V.G. Sergeyev, J. Phys. Chem. A 122, 461 (2018).

    Article  CAS  Google Scholar 

  39. L. Dennany, P.C. Innis, S.T. McGovern, G.G. Wallece, and R.J. Forster, Phys. Chem. Chem. Phys. 13, 3303 (2011).

    Article  CAS  Google Scholar 

  40. H. Choi, H. Kim, S. Hwang, W. Choi, and M. Jeon, Sol. Energy Mater. Sol. Cells 95, 323 (2011).

    Article  CAS  Google Scholar 

  41. R. Paul and L. Dai, Compos. Interfaces 25, 539 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) research grant nos. 1/E/KPT/2018 and 1/E1/KP.PTNBH/2019, Indonesian Ministry of Research, Technology and Higher Educations. R. R. Sunarya acknowledges the MORA Scholarship Ministry of Religious Affairs, Republic of Indonesia, for scholarship support. V. Suendo and R. R. Sunarya acknowledge PT. Arfindo Bersinar for ESR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veinardi Suendo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunarya, R.R., Hidayat, R., Radiman, C.L. et al. Electrocatalytic Activation of a DSSC Graphite Composite Counter Electrode Using In Situ Polymerization of Aniline in a Water/Ethanol Dispersion of Reduced Graphene Oxide. J. Electron. Mater. 49, 3182–3190 (2020). https://doi.org/10.1007/s11664-020-07977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07977-3

Keywords

Navigation