Skip to main content
Log in

Influence of Temperature and Aging on the Thermal Contact Resistance in Thermoelectric Devices

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

During thermal design in the first phases development, thermoelectric systems, such as thermoelectric generators, the most important parameter affecting the performance is thermal resistance of the components. This paper focusses on the thermal contact resistance (TCR), analyzing the influence of aging and temperature on different thermal interface materials (TIMs), i.e., thermal paste, graphite and indium. In previous papers, TCR has been studied depending on parameters such as surface roughness, bonding pressure, thermal conductivity and surface hardness. However, in thermoelectric applications, a relevant aspect to consider when choosing a TIM is aging due to thermal stress. The exposure of this type of material to high temperatures for long periods of time leads to deterioration, which causes an increase in the TCR impairing the conduction of the heat flow. Therefore, there is a need to study the behavior of TIMs exposed to temperatures typical in thermoelectric generators to make a correct selection of the TIM. It has been observed that exposure to temperatures of around 180°C induces a significant increase in the thermal impedance of the three TIMs under study, although this effect is much more relevant for thermal paste. The contact, comprising steel, thermal paste and ceramic, presents a 300% increase in the thermal impedance after 70 days of aging, whereas that exceeds 185% for the contact of aluminum, thermal paste and ceramic. In the tests with exposure temperature of 60°C, there is no observed decrease in the thermal impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔT :

Temperature difference between the fluxmeter surfaces in contact with the sample (°C)

A :

Cross-sectional area of fluxmeter (m2)

k A :

Aluminum thermal conductivity (W/m °C)

k C :

Ceramic thermal conductivity (W/m °C)

k fluxmeter :

Fluxmeter thermal conductivity (W/m °C)

k S :

Steel thermal conductivity (W/m °C)

L A :

Aluminum thickness (m)

L c :

Ceramic thickness (m)

L i :

Sensors position in the fluxmeter “i = 1 to 4” (m)

L S :

Steel thickness (m)

\( \dot{Q} \) :

Heat flow through the contact between fluxmeters (W)

R c :

Thermal contact resistance, TCR (°C m2/W)

T av :

Average sample temperature during the tests (°C)

T i :

Temperature sensors in the fluxmeter “i = 1 to 6” (°C)

T 3′ :

Bottom fluxmeter temperature in contact with the sample (°C)

T 4′ :

Upper fluxmeter temperature in contact with the sample (°C)

u(Zg):

Uncertainty of Global thermal impedance (°C m2/W)

u(Ti):

Uncertainty of temperature sensors in the fluxmeter “i = 1 to 6” (°C)

u(Li):

Uncertainty of sensors position in the fluxmeter “i= 1 to 4” (m)

u(\( \dot{Q} \)):

Uncertainty of heat flow through the contact between fluxmeters (W)

Z k :

Thermal impedance due to the conductivity (°C m2/W)

Z g :

Global thermal impedance of the sample (°C m2/W)

References

  1. P. Jaiswal and C.K. Dwivedi, Int. J. Innov. Technol. Creative Eng. (IJITCE) (2011). http://ia800305.us.archive.org/34/items/IJITCE/IJITCE_May3.pdf. Accessed 4 May 2011.

  2. S. Narumanchi, M. Mihalic, K. Kelly, and G. Eesley, in ITHERM Conference Proceedings (2008). https://doi.org/10.1109/itherm.2008.4544297.

  3. R. Prasher and C.P. Chiu, in Materials for Advanced Packaging. ed. By D. Lu and C. Wong (Springer, 2017), p. 511.

  4. I. Hu, M. Shih, and G. Kao, in IMPACT´15 Conference Proceedings (2015). https://doi.org/10.1109/impact.2015.7365218.

  5. G.K. Morris, M.P. Polakowski, L. Wei, M.D. Ball, M.G. Phillips, C. Mosey, and R.A. Lukaszewski, in IWIPD Conference Proceedings (2015). https://doi.org/10.1109/iwipp.2015.7295991.

  6. J. Due and A.J. Robinson, Appl. Therm. Eng. 50, 455 (2013).

    Article  CAS  Google Scholar 

  7. R.A. Sayer, T.P. Koehler, S.M. Dalton, T.W. Grasser, and R.L. Akau, in ASME 2013 Summer Heat Transfer Conference Proceedings (2013). https://doi.org/10.1115/ht2013-17408.

  8. J.-P. Ousten and Z. Khatir, in EPE Conference proceedings (2011). https://hal.archives-ouvertes.fr/hal-00628876. Accessed 4 Oct 2011.

  9. V. Khuu, M. Osterman, A. Bar-Cohen, and M. Pecht, IEEE Trans. Device Mater. Reliab. 9, 379 (2009).

    Article  Google Scholar 

  10. R. Skuriat, J.F. Li, P.A. Agyakwa, N. Mattey, P. Evans, and C.M. Johnson, Microelectron. Reliab. 53, 1933 (2013).

    Article  CAS  Google Scholar 

  11. American Society for Testing and Materials, ASTM Standard D5470-06 (2006).

  12. J. Liu, H. Feng, X. Luo, R. Hu, and S. Liu, in Int. Conf. Electron. Packag. Technol. High Density Packag. ICEPT-HDP Conference Proceedings (2010), pp. 116–120.

  13. W. Zongren, Z. Weifang, and Y. Mingyuan, Adv. Mater. Res. 337, 774 (2011).

    Article  Google Scholar 

  14. R.A. Sayer, Heat Transf. Eng. (2015). https://doi.org/10.1080/01457632.2014.932553.

    Article  Google Scholar 

  15. N. Goel, A. Bhattacharya, J.A. Cervantes, R.K. Mongia, S.V. Machiroutu, H.L. Lin, Y.C. Huang, K.H. Fan, B.L. Denq, C.H. Liu, C.H. Lin, C.W. Tien, and J.H. Pan, Electron. Packag. Technol. Conf. Proc. Conf. (2008). https://doi.org/10.1109/EPTC.2008.4763637.

    Article  Google Scholar 

  16. M.C. Kumar Swamy and Satyanarayan, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07623-7.

  17. T. Sakamoto, T. Iida, T. Sekiguchi, Y. Taguchi, N. Hirayama, K. Nishio, and Y. Takanashi, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-014-3165-7.

    Article  Google Scholar 

  18. A. Rodríguez, J.G. Vián, and D. Astrain, Appl. Therm. Eng. (2009). https://doi.org/10.1016/j.applthermaleng.2009.03.005.

    Article  Google Scholar 

  19. A. Rodríguez, D. Astrain, A. Martínez, E. Gubía, and F.J. Sorbet, J. Electron. Mater. (2013). https://doi.org/10.1007/s11664-013-2504-4.

    Article  Google Scholar 

  20. A. Rodríguez, D. Astrain, A. Martínez, and P. Aranguren, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-014-3097-2.

    Article  Google Scholar 

  21. P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2015.04.077.

    Article  Google Scholar 

  22. D.P. Bentz and K.R. Prasad, Rep. No. Building and Fire Research Laboratory (BFRL)-NIST 7401, NIST, Gaithersburg, MD. Publisher: U.S. Department of Commerce (2007).

Download references

Acknowledgments

The authors are indebted to the Spanish Ministry of Economy and Competitiveness, and the European Regional Development Fund for economic support to this work, included in the RTI2018-093501-B-C22 research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A., Pérez-Artieda, G., Beisti, I. et al. Influence of Temperature and Aging on the Thermal Contact Resistance in Thermoelectric Devices. J. Electron. Mater. 49, 2943–2953 (2020). https://doi.org/10.1007/s11664-020-08015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08015-y

Keywords

Navigation