Skip to main content
Log in

Influence of Substrate Surface Finish Metallurgy on Lead-Free Solder Joint Microstructure with Implications for Board-Level Reliability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 09 May 2020

This article has been updated

Abstract

Solder joints can experience fatigue cracking at the interface between the solder and substrate during thermal cycling due to the difference in thermal expansion between joined components. In order to strengthen the interfacial region and prevent cracking, two Cu pad surface treatments were studied on Sn-3Ag-0.5Cu solder, and on matte Sn plate and Ni plate coatings. The resulting intermetallic microstructures were characterized using scanning electron microscopy and energy-dispersive spectroscopy. Mechanical testing was performed using nano-indentation on the solder joints. The matte Sn plate on Cu sample formed an uneven distribution of Ag3Sn particles and a planar Cu6Sn5 interfacial intermetallic. The Ni-plated sample formed a needle-like Ni-rich interfacial intermetallic and uniform dispersion of Ag3Sn particles. The rough intermetallic compound (IMC)/solder interface and even IMC particle distribution cause the Ni-plated sample to experience reduced damage under board-level thermomechanical cycling because the interfacial structure reduces the Sn matrix recrystallization that contributes to fatigue cracking. In contrast, the matte Sn-plated sample exhibited an Ag3Sn particle-free zone adjacent to a planar Cu6Sn5 IMC layer which allows for rapid Sn recrystallization and fatigue crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 09 May 2020

    In the original article, there is an error in Fig.��1. Following is the corrected Fig.��1.

References

  1. D.R. Frear, JOM 48, 49 (1996).

    Article  CAS  Google Scholar 

  2. C. Chen and S.W. Liang, J. Mater. Sci.: Mater. Electron. 18, 259 (2007).

    CAS  Google Scholar 

  3. N. Chawla, Int. Mater. Rev. 54, 368 (2009).

    Article  CAS  Google Scholar 

  4. W.Z. Hsieh, M.A. Rahman, T.H. Yang, T.T. Kuo, and C.E. Ho, Surf. Coat. Technol. 303, 112 (2016).

    Article  CAS  Google Scholar 

  5. J. Han, F. Guo, and J.P. Liu, J. Alloys Compd. 704, 574 (2017).

    Article  CAS  Google Scholar 

  6. L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, and P. Borgesen, J. Electron. Mater. 41, 241 (2012).

    Article  CAS  Google Scholar 

  7. Y. Zhu, X. Li, R. Gao, and C. Wang, J. Mater. Sci.: Mater. Electron. 25, 3863 (2014).

    CAS  Google Scholar 

  8. N.M. Shaffiar, A.F.M. Yamin, W.K. Loh and M.N. Tamin, in IEEE 14th Electronic Packaging Technology Conference (2012).

  9. A.R. Fix, W. Nuchter, and J. Wilde, Solder. Surf. MT. Tech. 20, 13 (2008).

    Article  CAS  Google Scholar 

  10. P.L. Liu and J.K. Shang, Metall. Mater. Trans. A 31A, 2867 (2000).

    Article  CAS  Google Scholar 

  11. K.N. Subramanian and J.G. Lee, Mater. Sci. Eng. A 421, 46 (2006).

    Article  Google Scholar 

  12. T. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 41, 2 (2012).

    Article  Google Scholar 

  13. A.U. Telang, T.R. Bieler, D.E. Mason, and K.N. Subramanian, J. Electron. Mater. 32, 1455 (2003).

    Article  CAS  Google Scholar 

  14. J.K. Shang and D. Yao, Trans. ASME 118, 41 (1996).

    Google Scholar 

  15. H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, Mater. Eng. A A358, 134 (2003).

    Article  CAS  Google Scholar 

  16. F.X. Che and J.H.L. Pang, J. Alloys Compd. 541, 6 (2012).

    Article  CAS  Google Scholar 

  17. T. An and F. Qin, Microelectron. Reliab. 54, 932 (2014).

    Article  CAS  Google Scholar 

  18. J. Shen, D. Zhai, Z. Cao, M. Zhao, and Y. Pu, J. Electron. Mater. 43, 2 (2014).

    Article  Google Scholar 

  19. J. Zhao, Y. Miyashita, and Y. Mutoh, Int. J. Fat. 23, 723 (2001).

    Article  CAS  Google Scholar 

  20. R.M. Shalaby, J. Mater. Sci.: Mater. Electron. 26, 6625 (2015).

    CAS  Google Scholar 

  21. M. Kerr and N. Chawla, Acta Mater. 52, 4527 (2004).

    Article  CAS  Google Scholar 

  22. R.S. Sidhu and N. Chawla, Metall. Mater. Trans. A 39A, 799 (2008).

    Article  CAS  Google Scholar 

  23. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997).

    Article  Google Scholar 

  24. R.S. Sidhu, S.V. Madge, X. Deng, and N. Chawla, J. Electron. Mater. 36, 12 (2007).

    Article  Google Scholar 

  25. D. Mu, H. Yasuda, H. Huang, and K. Nogita, J. Alloys Compd. 536, 38 (2012).

    Article  CAS  Google Scholar 

  26. X. Deng, R.S. Sidhu, P. Johnson, and N. Chawla, Metall. Mater. Trans. A 36A, 55 (2005).

    Article  CAS  Google Scholar 

  27. Y.-H. Baek, B.-M. Chung, Y.-S. Choi, J. Choi, and J.-Y. Huh, J. Alloys Compd. 579, 75 (2013).

    Article  CAS  Google Scholar 

  28. M. Sona and K.N. Prabhu, J. Mater. Sci.: Mater. Electron. 24, 3149 (2013).

    CAS  Google Scholar 

  29. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 15 (1984).

    Article  Google Scholar 

  30. M. He, A. Kumar, P.T. Yeo, G.J. Qi, and Z. Chen, Thin Solid Films 462, 387 (2004).

    Article  Google Scholar 

  31. W.H. Chen, C.-F. Yu, H.-C. Cheng, Y.M. Tsai, and S.-T. Lu, Microelectron. Reliab. 53, 30 (2013).

    Article  CAS  Google Scholar 

  32. C. Schmetterer, H. Flandorfer, K.W. Richter, and H. Ipser, J. Electron. Mater. 36, 11 (2007).

    Article  Google Scholar 

  33. J. Gorlich, D. Baither, and G. Schmitz, Acta Mater. 58, 3187 (2010).

    Article  Google Scholar 

  34. H. Gao, F. Wei, Y. Sui, Y. He, and Q. Meng, J. Mater. Sci.: Mater. Electron. 30, 2186 (2019).

    CAS  Google Scholar 

  35. C.-M. Chuang and K.-L. Lin, J. Electron. Mater. 32, 12 (2003).

    Google Scholar 

  36. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  37. A.K. Gain and L. Zhang, Materialia 5, 100234 (2019).

    Article  Google Scholar 

  38. L. Jiang, H. Jiang, and N. Chawla, J. Electron. Mater. 41, 2083 (2012).

    Article  CAS  Google Scholar 

  39. D. Kim, J.-H. Chang, J. Park, and J.J. Pak, J. Mater. Sci.: Mater. Electron. 22, 703 (2011).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding for this research from NXP, as well as the use of facilities at the Center for 4D Materials Science at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, M.B., Maity, T., Nazmus Sakib, A.R. et al. Influence of Substrate Surface Finish Metallurgy on Lead-Free Solder Joint Microstructure with Implications for Board-Level Reliability. J. Electron. Mater. 49, 3251–3258 (2020). https://doi.org/10.1007/s11664-020-08013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08013-0

Keywords

Navigation