Skip to main content
Log in

Blocky electrode prepared from nickel-catalysed lignin assembled woodceramics

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Blocky woodceramic electrode materials are prepared by Ni(NO3)2 catalysis and K2CO3 activation with waste poplar wood which is self-assembled with pulping black liquor lignin. The results show that the natural hierarchical pore structure of wood can be well preserved, and the activation, catalytic graphitisation, and Ni2+ doping are accomplished simultaneously in the sintering process. Meanwhile, some of the lignin which self-assembled onto the pore surface of wood and on the crystal surface of activator and catalyst is transformed into carbon nanosheet and multilayer graphene, and some present an orderly arrangement according to the original form of the crystal. Ni2+ doping not only builds the basic form of electrode but also reduces the stacks of carbon nanosheet and multilayer graphene. Meanwhile, activation can improve the pore structure, providing more channels for the storage and transmission of electrons and ions. At the current density of 0.25 A g−1, the specific capacitance of the sample can reach 150.8 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhang S, Wu C, Wu W et al (2019) High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps. J Power Sources 424:1–7. https://doi.org/10.1016/j.jpowsour.2019.03.100

    Article  CAS  Google Scholar 

  2. Pandolfo AG, Hollenkamp AF (2016) Carbon properties and their role in supercapacitors. J Power Sources 157(1):1–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  3. Le TH, Yang Y, Yu L, Gao T, Huang Z, Kang F (2016) Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J Appl Polym Sci 133(19):43397–43404. https://doi.org/10.1002/app.43397

    Article  CAS  Google Scholar 

  4. Zhu Y, Murali S, Stoller MD et al (2011) Carbon-based supercapacitors produced by activation of graphene. Sci 332(6037):1537–1541. https://doi.org/10.1126/science.1200770

    Article  CAS  Google Scholar 

  5. Thubsuang U, Laebang S, Manmuanpom N, Sujitra W, Thanyalak C (2017) Tuning characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials. J Mater Sci 52(11):6837–6855. https://doi.org/10.1007/s10853-017-0922-z

    Article  CAS  Google Scholar 

  6. Wu C, Zhang S, Wu W et al (2019) Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon 150:311–318. https://doi.org/10.1016/j.carbon.2019.05.032

    Article  CAS  Google Scholar 

  7. Okachi Y, Ogawa K, Tsuji J, Okabe T (2013) Development of far infrared ray based drying unit using woodceramics. Trans Mater Res Soc Jpn 38(3):507–512. https://doi.org/10.14723/tmrsj.38.507

    Article  CAS  Google Scholar 

  8. Takasaki A, Hjima S, Yamane T, Yamane T (2012) Hydrogen adsorption by woodceramics produced from biomass. J Shanghai Jiaotong Univ 17(3):330–333. https://doi.org/10.1007/s12204-012-1280-2

    Article  Google Scholar 

  9. Kwon JH, Park SB, Ayrilmis N, Oh SW, Kim NH (2013) Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composite. Compos Part B 46(3):102–107. https://doi.org/10.1016/j.compositesb.2012.10.012

    Article  CAS  Google Scholar 

  10. Sun D, Yu X, Ji X, Sun Z, Sun D (2019) Nickel/woodceramics assembled with lignin-based carbon nanosheets and multilayer graphene as supercapacitor electrode. J Alloys Compd 805:327–337. https://doi.org/10.1016/j.jallcom.2019.06.375

    Article  CAS  Google Scholar 

  11. Zhou W, Yu Y, Xiong X, Zhou C (2018) Fabrication of α-Fe/Fe3C/woodceramic nanocomposite with its improved microwave absorption and mechanical properties. Materials 11(6):878–885. https://doi.org/10.3390/ma11060878

    Article  CAS  Google Scholar 

  12. Yaddanapudi HS, Tian K, Teng S, Shiang T (2016) Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes. Sci Res 6(1):1–9. https://doi.org/10.1038/srep33659

    Article  CAS  Google Scholar 

  13. Bonaccorso F, Colombo L, Yu G et al (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501–1246501. https://doi.org/10.1126/science.1246501

    Article  CAS  Google Scholar 

  14. Yuan Z, Qiao F, Wang G, Zhou J, Cui H, Zhuo S, Xing LB (2018) Three dimensional nitrogen-doped and nitrogen, sulfur-codoped graphene hydrogels for electrode materials in supercapacitors. J Nanosci Nanotechnol 18(8):5423–5432. https://doi.org/10.1166/jnn.2018.15431

    Article  CAS  Google Scholar 

  15. Phulpoto S, Memon MA, Yan S, Geng J (2018) Macroporous graphene thin films as electrochemical electrodes: enhancing the sensitivity for detection of metal ions. J Nanosci Nanotechnol 17(6):4100–4106. https://doi.org/10.1166/jnn.2018.15037

    Article  CAS  Google Scholar 

  16. Wen GD, Gu Q, Liu Y, Schlögl R, Wang C, Tian Z, Su DS (2018) Biomass-derived graphene-like carbon: an efficient metal-free carbocatalysts for epoxidation reaction. Angew Chem Int Ed 57(51):16898–16902. https://doi.org/10.1002/ange.201809970

    Article  CAS  Google Scholar 

  17. Shams SS, Zhang LS, Hu R, Zhang R, Zhu J (2015) Synthesis of graphene from biomass: a green chemistry approach. Mater Lett 161:476–479. https://doi.org/10.1016/j.matlet.2015.09.022

    Article  CAS  Google Scholar 

  18. Jeong GH, Leeb I, Leeb D et al (2018) Fabrication of β-CoV3O8 nanorods embedded in graphene shets and their application for electrochemical charge storage electrode. Nanotechnology 29(19):195403–195415. https://doi.org/10.1088/1361-6528/aaae3e

    Article  CAS  Google Scholar 

  19. Farma R, Deraman M, Awitdrus A et al (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 132:254–261. https://doi.org/10.1016/j.biortech.2013.01.044

    Article  CAS  Google Scholar 

  20. Wanga Y, Lia H, Rena Y, Chena X, Xieb K, Sun Y (2018) Nanowire-core/double-shell of NiMoO4@C@Ni3S2 arrays on Ni foam: insights into supercapacitive performance and capacitance degradation. Nanotechnology 29(38):385402–385413. https://doi.org/10.1088/1361-6528/aad0b5

    Article  CAS  Google Scholar 

  21. Ye JL, Zhu YW (2017) Porous carbon materials produced by KOH activation for supercapacitor electrodes. J Electrochem 23(5):548–559. https://doi.org/10.13208/j.electrochem.170341

    Article  CAS  Google Scholar 

  22. Yaddanapudi HS, Tian K, Teng S, Tiwari A (2016) Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes. Sci Rep 6:1–9. https://doi.org/10.1038/srep33659

    Article  CAS  Google Scholar 

  23. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(4):23710–23725. https://doi.org/10.1039/c2jm34066f

    Article  CAS  Google Scholar 

  24. Chen C, Jiang JC, Sun K, Lu X, Zhu G, Jia Y (2017) Preparation of cellulose-based graphitized material catalyzed by Ni. Chem Ind Forest Prod 37(4):30–34. https://doi.org/10.3969/j.issn.0253-2417.2017.04.004

    Article  CAS  Google Scholar 

  25. Zhou Q, Gong Y, Tao K (2019) Facile one-pot synthesis of 2D vanadium-doped NiCl(OH) nanoplates assembled by 3D nanosheet arrays on Ni foam for supercapacitor application. Appl Surf Sci 478:75–86. https://doi.org/10.1016/j.apsusc.2019.01.195

    Article  CAS  Google Scholar 

  26. Sun DL, Yu XC, Ji XQ (2018) Preparation and performance of black liquor lignin basic activated woodceramics doped Ni. J Inorg Mater 33(12):289–1296. https://doi.org/10.15541/jim20180098

    Article  Google Scholar 

  27. Ji XQ, Sun DL, Yu XC, Hao XF, Chen XY, Zhu ZH (2019) Preparation and electrochemical performance of Fe3+-doped activated lignin basic woodceramics. Mater Rep 33(10):3390–3395. https://doi.org/10.11896/cldb.18100183

    Article  Google Scholar 

  28. Otakar F, Marcel M, Janina M et al (2011) Raman 2D-band splitting in graphene: theory and experiment. ACS Nano 5(3):2231–2239. https://doi.org/10.1021/nn103493g

    Article  CAS  Google Scholar 

  29. Jung S, Myung Y, Kim BN, Kim IG, You IK, Kim T (2018) Activated biomass-derived graphene-based carbons for supercapacitors with high energy and power density. Sci Rep 8:1–5. https://doi.org/10.1038/s41598-018-20096-8

    Article  CAS  Google Scholar 

  30. Ma X, Yuan C, Liu X (2013) Mechanical, microstructure and surface characterizations of carbon fibers prepared from cellulose after liquefying and curing. Materials 7(1):75–84. https://doi.org/10.3390/ma7010075

    Article  CAS  Google Scholar 

  31. Ōya A, Mochizuki M, Ōtani S, Tomizuka I (1979) An electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel. Carbon 17(1):71–76. https://doi.org/10.1016/0008-6223(79)90072-1

    Article  Google Scholar 

  32. Yao H, Zhang G, Zhang F, Li W, Yang Y, Chen L (2017) A novel Ni coordination supramolecular network hybrid monolith of 3D graphene as electrode materials for supercapacitors. Mater Today Energy 6:164–172. https://doi.org/10.1016/j.mtener.2017.09.012

    Article  Google Scholar 

  33. Zhou W, Zheng K, He L et al (2018) Ni/Ni3C core-shell nanochains and its magnetic properties: one-step synthesis at low temperature. Nano Lett 8(4):1147–1152. https://doi.org/10.1021/nl073291j

    Article  CAS  Google Scholar 

  34. Bai YJ, Zhang HJ, Li X, Liu L, Xu H, Qiu H, Wang Y (2015) Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 7(4):1446–1453. https://doi.org/10.1039/c4nr05862c

    Article  CAS  Google Scholar 

  35. Addoun A, Dentzer J, Ehrburger P (2002) Porosity of carbons obtained by chemical activation: effect of the nature of the alkaline carbonates. Carbon 40(7):1140–1143. https://doi.org/10.1016/S0008-6223(02)00088-X

    Article  CAS  Google Scholar 

  36. Ōya A, Mochizuki M, Ōtani S, Isao T (1979) An electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel. Carbon 17(1):71–76. https://doi.org/10.1016/0008-6223(79)90072-1

    Article  Google Scholar 

  37. Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(11):112001–112020. https://doi.org/10.1088/0957-4484/23/11/112001

    Article  Google Scholar 

  38. De LR (1963) On porous electrodes in electrolyte solutions. Electrochim Acta 8(10):751–780. https://doi.org/10.1016/0013-4686(63)80042-0

    Article  Google Scholar 

  39. Thubsuang U, Laebang S, Manmuanpom N, Wongkasemjit S, Chaisuwan T (2017) Tuning characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials. J Mater Sci 52:6837–6855. https://doi.org/10.1007/s10853-017-0922-z

    Article  CAS  Google Scholar 

  40. Wang AE, Greber I, Angus JC (2019) Contact charge transfer between inorganic dielectric solids of different surface roughness. J Electrost 101:103359–103364. https://doi.org/10.1016/j.elstat.2019.103359

    Article  CAS  Google Scholar 

  41. Fu S, Song J, Zhu C, Du D, Lin Y (2019) Metal-organic frameworks based porous carbons for oxygen reduction reaction electrocatalysts for fuel cell applications. Nanocarbon Electrochem 11:251–284. https://doi.org/10.1002/9781119468288.ch8

    Article  CAS  Google Scholar 

  42. Wu B, Lu W (2017) A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction. J Power Sources 360:360–372. https://doi.org/10.1016/j.jpowsour.2017.05.115

    Article  CAS  Google Scholar 

  43. Zhou S, Kong X, Zheng B, Huo F, Strømme M, Xu C (2019) Cellulose nanofiber @ conductive metal-organic frameworks for high-performance flexible supercapacitors. ACS Nano 13:9578–9586. https://doi.org/10.1021/acsnano.9b04670

    Article  CAS  Google Scholar 

  44. Ban FY, Jayabal S, Lim HN, Lee HW, Huang NM (2017) Synthesis of nitrogen-doped reduced graphene oxide-multiwalled carbon nanotube composite on nickel foam as electrode for high-performance supercapacitor. Ceram Int 43(1):20–27. https://doi.org/10.1016/j.ceramint.2016.07.087

    Article  CAS  Google Scholar 

  45. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2015) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1):174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  Google Scholar 

  46. Chen C, Zhang Y, Li Y et al (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 2(10):538–545. https://doi.org/10.1039/C6EE03716J

    Article  CAS  Google Scholar 

  47. Xu H, Hu X, Yang H, Sun Y, Hu C, Huang Y (2014) Flexible Asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nano flowers: larger areal mass promises higher energy density. Adv Energy Mater 5(6):1401882–1401889. https://doi.org/10.1002/aenm.201401882

    Article  CAS  Google Scholar 

  48. Hu E, Yu XY, Chen F, Wu Y, Hu Y, Lou XW (2017) Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction. Adv Energy Mater 8(9):1702476–1702484. https://doi.org/10.1002/aenm.201702476

    Article  CAS  Google Scholar 

  49. Shang P, Zhang J, TangW XuQ, Guo S (2016) 2D thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors. Adv Funct Mater 26(43):7766–7774. https://doi.org/10.1002/adfm.201603504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 31670572, 31270611]; and also greatly appreciate the comments and insights provided by the editors and reviewers.

Funding

This study was funded by the National Natural Science Foundation of China [grant number 31670572, 31270611].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Sun, D., Ji, X. et al. Blocky electrode prepared from nickel-catalysed lignin assembled woodceramics. J Mater Sci 55, 7760–7774 (2020). https://doi.org/10.1007/s10853-020-04565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04565-y

Navigation