Skip to main content
Log in

Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells. In fact Western blot and Immunofluorescence analysis detected the viral protein 1 (VP1) in the cells resulting from the construction of a recombinant bacmid DNA carrying the key immunogenic protein then transfected in the insect cells. Sucrose gradient ultracentrifugation fractions of the infected cell lysates contained the recombinant protein and the electron microscopy demonstrated the presence of VLPs in these sucrose fractions. This study clearly shows for the first time the expression of CVB4 VP1 structure protein alone can form VLPs in the baculovirus-infected insect cell keeping conserved both characteristics and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

References

  1. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, Lindberg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T (2017) ICTV virus taxonomy profile: Picornaviridae. J Gen Virol 98:2421–2422. https://doi.org/10.1099/jgv.0.000911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Simpson AA, Ledford RM, Bator CM, Chakravarty S, Skochko GA, Demenczuk TM, Watanyar A, Pevear DC, Rossmann MG (2004) Structural and virological studies of the stages of virus replication that are affected by antirhinovirus compounds. J Virol 78:11061–11069. https://doi.org/10.1128/jvi.78.20.11061-11069.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stanway G (1990) Structure, function and evolution of picornaviruses. J Gen Virol 71:2483–2501. https://doi.org/10.1099/0022-1317-71-11-2483

    Article  CAS  PubMed  Google Scholar 

  4. Kräusslich HG, Nicklin MJH, Lee CK, Wimmer E (1988) Polyprotein processing in picornavirus replication. Biochimie 70:119–130. https://doi.org/10.1016/0300-9084(88)90166-6

    Article  PubMed  Google Scholar 

  5. M'hadheb-Gharbi MB, Kean KM, Gharbi J (2009) Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of Coxsackievirus B3 mutants. Mol Biol Rep 36(2):255–262. https://doi.org/10.1007/s11033-007-9174-3

    Article  CAS  PubMed  Google Scholar 

  6. Muckelbauer JK, Kremer M, Minor I, Diana G, Dutko FJ, Groarke J, Pevear DC, Rossmann (1995) The structure of coxsackievirus B3 at 3.5 å resolution. Structure 3:653–667. https://doi.org/10.1016/s0969-2126(01)00201-5

    Article  CAS  PubMed  Google Scholar 

  7. Caro V, Guillot S, Delpeyroux F, Crainic R (2001) Molecular strategy for “serotyping” of human enteroviruses. J Gen Virol 82:79–91. https://doi.org/10.1099/0022-1317-82-1-79

    Article  CAS  PubMed  Google Scholar 

  8. Benkahla MA, Elmastour F, Sane F, Vreulx AC, Engelmann I, Desailloud R, Jaidane H, Alidjinou EK, Hober D (2018) Coxsackievirus-B4E2 can infect monocytes and macrophages in vitro and in vivo. Virology 522:271–280. https://doi.org/10.1016/j.virol.2018.06.010

    Article  CAS  PubMed  Google Scholar 

  9. Souii A, Ben M'hadheb-Gharbi M, Gharbi J (2013) Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 55(2):179–202. https://doi.org/10.1007/s12033-013-9674-4

    Article  CAS  PubMed  Google Scholar 

  10. Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6:279–289. https://doi.org/10.1038/nrendo.2010.27

    Article  PubMed  Google Scholar 

  11. Bergamin CS, Dib SA (2015) Enterovirus and type 1 diabetes: what is the matter? World J Diabetes 6:828. https://doi.org/10.4239/wjd.v6.i6.828

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jaïdane H, Hober D (2008) Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 34:537–548. https://doi.org/10.1016/j.diabet.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  13. Fuenmayor J, Gòdia F, Cervera L (2017) Production of virus-like particles for vaccines. N Biotechnol 39:174–180. https://doi.org/10.1016/j.nbt.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdoli A, Soleimanjahi H, Fotouhi F, Teimoori A, Pour Beiranvand S, Kianmehr Z (2013) Human papillomavirus type16- L1 VLP production in insect cells. Iran J Basic Med Sci 16:891–895. https://doi.org/10.22038/IJBMS.2013.1345

    Article  PubMed  PubMed Central  Google Scholar 

  15. Syed Musthaq S, Madhan S, Sahul Hameed AS, Kwang J (2009) Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon. Virology 391:315–324. https://doi.org/10.1016/j.virol.2009.06.017

    Article  CAS  PubMed  Google Scholar 

  16. Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ (2013) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440. https://doi.org/10.1002/bit.25159

    Article  CAS  PubMed  Google Scholar 

  17. Cervera L, Gutiérrez-Granados S, Martínez M, Blanco J, Gòdia F, Segura MM (2013) Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. J Biotechnol 166:152–165. https://doi.org/10.1016/j.jbiotec.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Liu CC, Guo MS, Lin FHY, Hsiao KN, Chang KHW, Chou AH, Wang YC, Chen YC, Yang CS, Chong PCS (2011) Purification and characterization of enterovirus 71 viral particles produced from vero cells grown in a serum-free microcarrier bioreactor system. PLoS ONE 6:e20005. https://doi.org/10.1371/journal.pone.0020005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krammer F, Nakowitsch S, Messner P, Palmberger D, Ferko B, Grabherr R (2010) Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnol J 5:17–23. https://doi.org/10.1002/biot.200900267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grabherr R, Ernst W (2010) Baculovirus for eukaryotic protein display. Curr Gene Ther 10:195–200. https://doi.org/10.2174/156652310791321297

    Article  CAS  PubMed  Google Scholar 

  21. Carbonell LF, Klowden MJ, Miller LK (1985) Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells. J Virol 56:153–160

    Article  CAS  Google Scholar 

  22. Luckow VA, Summers MD (1988) Trends in the development of baculovirus expression vectors. Nat Biotechnol 6:47–55. https://doi.org/10.1038/nbt0188-47

    Article  CAS  Google Scholar 

  23. Lin SY, Chiu HY, Chiang BL, Hu YC (2015) Development of EV71 virus-like particle purification processes. Vaccine 33:5966–5973. https://doi.org/10.1016/j.vaccine.2015.04.077

    Article  CAS  PubMed  Google Scholar 

  24. Oker-Blom C, Airenne KJ, Grabherr R (2003) Baculovirus display strategies: emerging tools for eukaryotic libraries and gene delivery. Briefings Funct Genomics Proteomics 2:244–253. https://doi.org/10.1093/bfgp/2.3.244

    Article  CAS  Google Scholar 

  25. Mähönen AJ, Airenne KJ, Purola S, Peltomaa E, Kaikkonen MU, Riekkinen MS, Heikura T, Kinnunen K, Roschier MM, Wirth T, Ylä-Herttuala S (2007) Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol 131:1–8. https://doi.org/10.1016/j.jbiotec.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  26. Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA (2005) Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol 59:587–635. https://doi.org/10.1146/annurev.micro.58.030603.123625

    Article  CAS  PubMed  Google Scholar 

  27. Thomassen YE, Van ’t Oever AG, Van Oijen MGCT, Wijffels RH, Van Der Pol LA, Bakker WAM (2013) Next generation inactivated polio vaccine manufacturing to support post polio-eradication biosafety goals. PLoS ONE 8:e83374. https://doi.org/10.1371/journal.pone.0083374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung Y, Huang J, Lai C, Sheng H, Shih S, Ho M, Hu Y (2006) Expression, purification, characterization of enterovirus 71 virus-like particles. World J Gastroenterol 12(6):921. https://doi.org/10.3748/wjg.v12.i6.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim HJ, Son HS, Lee SW, Yoon Y, Hyeon JY, Chung GT, Lee JW, Yoo JS (2019) Efficient expression of enterovirus 71 based on virus-like particles vaccine. PLoS ONE 14:e0210477. https://doi.org/10.1371/journal.pone.0210477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Parham NJ, Zhang F, Aasa-Chapman M, Gould EA, Zhang H (2012) Vaccination with coxsackievirus B3 virus-like particles elicits humoral immune response and protects mice against myocarditis. Vaccine 30:2301–2308. https://doi.org/10.1016/j.vaccine.2012.01.061

    Article  CAS  PubMed  Google Scholar 

  31. Hankaniemi MM, Laitinen OH, Stone VM, Sioofy-Khojine A, Määttä JAE, Larsson PG, Marjomäki V, Hyöty H, Flodström-Tullberg M, Hytönen VP (2017) Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine 35:3718–3725. https://doi.org/10.1016/j.vaccine.2017.05.057

    Article  CAS  PubMed  Google Scholar 

  32. Lyu K, He Y-L, Li H-Y, Chen R (2015) Crystal structures of yeast-produced enterovirus 71 and enterovirus 71/Coxsackievirus A16 chimeric virus-like particles provide the structural basis for novel vaccine design against hand-foot-and-mouth disease. J Virol 89:6196–6208. https://doi.org/10.1128/jvi.00422-15

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bräutigam S, Snezhkov E, Bishop DHL (1993) Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. Virology 192:512–524. https://doi.org/10.1006/viro.1993.1067

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful for the skillful technical assistance provided by Antonio Varas, Dolores Rodríguez, Ana Oña and Cristina Patiño from the CNB Confocal and Electron Microscopy services. Authors acknowledge the Tunisian Ministry of Higher Education and Scientific Research (UR17ES30) and the Deanship of Scientific Research at King Faisal University for the financial support under Nasher Track (Grant No. 186390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawhar Gharbi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassine, I.H., Gharbi, J., Hamrita, B. et al. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 47, 2835–2843 (2020). https://doi.org/10.1007/s11033-020-05333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05333-6

Keywords

Navigation