Skip to main content

Advertisement

Log in

High-performance asymmetric supercapacitors fabricated by amorphous MnO2 on 3D-Ni foam as positive electrodes in a mixed electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A high-performance supercapacitor based on an amorphous MnO2 electrode on Ni foam (MnO2/NF) in a Na2SO4/KOH mixed electrolyte was fabricated and studied. XRD, Raman, TEM, and SEM characterizations highlighted the nanostructure of these amorphous MnO2 materials. The electrochemical behaviors of amorphous MnO2/NF were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) measurements, and the cycling performance. The results reveal that the amorphous MnO2/NF in the Na2SO4/KOH electrolyte exhibited a high capacitance. The Na2SO4/KOH mixed electrolyte with ionic interactions in the mesopores increased the capacitance. However, weaker ion-interacting cations can diffuse into microspores without losing their capacitive ability. An asymmetric supercapacitor has been developed successfully with amorphous MnO2 and graphene nanosheets (GNs)/multiwalled carbon nanotubes (MWCNTs) as the positive and negative electrodes, respectively. The MnO2//GNS–MWCNT (GM) asymmetric supercapacitor exhibits a maximum energy density of 43.3 Wh kg−1 at a power density of 500 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    CAS  Google Scholar 

  2. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    CAS  Google Scholar 

  3. Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Carbon 67, 119 (2014)

    CAS  Google Scholar 

  4. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Nano Lett. 14, 731 (2014)

    CAS  Google Scholar 

  5. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5, 72 (2013)

    CAS  Google Scholar 

  6. J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 22, 2632 (2012)

    CAS  Google Scholar 

  7. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21, 2366 (2011)

    CAS  Google Scholar 

  8. A. Khaligh, Z. Li, I.E.E.E. Trans, Veh. Technol. 59, 2806 (2010)

    Google Scholar 

  9. H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, W. Lv, H.D. Jang, J. Huang, Q.H. Yang, Small (2017). https://doi.org/10.1002/smll.201701026

    Article  Google Scholar 

  10. H. Pang, X. Li, Q. Zhao, H. Xue, W.-Y. Lai, Z. Hu, W. Huang, Nano Energy. 35, 138 (2017)

    CAS  Google Scholar 

  11. M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Chem. Eng. J. 309, 151 (2017)

    CAS  Google Scholar 

  12. M. Liu, X. Wang, D. Zhu, L. Li, H. Duan, Z. Xu, Z. Wang, L. Gan, Chem. Eng. J. 308, 240 (2017)

    CAS  Google Scholar 

  13. X.-T. Yin, D. Dastan, F.-Y. Wu, J. Li, Nanomaterials 9, 1163 (2019)

    CAS  Google Scholar 

  14. D. Dastan, A. Banpurkar, J. Mater. Sci. Mater. Electron. 28, 3851 (2016)

    Google Scholar 

  15. D. Dastan, S.L. Panahi, A.P. Yengntiwar, A.G. Banpurkar, Adv. Sci. Lett. 22, 950 (2016)

    Google Scholar 

  16. M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, L. Chen, J. Mater. Chem. A 2, 2555 (2014)

    CAS  Google Scholar 

  17. Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang, D. Qi, S. Pan, X.J. Loh, X. Chen, Adv. Mater. (2018). https://doi.org/10.1002/adma.201704531

    Article  Google Scholar 

  18. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M.B. Chan-Park, C.M. Li, P. Chen, Carbon 50, 4865 (2012)

    CAS  Google Scholar 

  19. Y. Zhang, Y. Liu, F. Guo, Y. Hu, X. Liu, Y. Qian, Solid State Commun. 134, 523 (2005)

    CAS  Google Scholar 

  20. A. Mery, F. Ghamouss, C. Autret, D. Farhat, F. Tran-Van, J. Power Sources 305, 37 (2016)

    CAS  Google Scholar 

  21. P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, ACS Nano 111, 444 (2017)

    Google Scholar 

  22. C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H.-J. Fan, Energy Environ. Sci. 4, 4496 (2011)

    CAS  Google Scholar 

  23. T.N.J.I. Edison, R. Atchudan, N. Karthik, X. Dangsheng, L.Y. Rok, J. Taiwan Inst. Chem. Eng. 97, 414 (2019)

    CAS  Google Scholar 

  24. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Compos. A 125, 105521 (2019)

    Google Scholar 

  25. V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources 153, 183 (2006)

    CAS  Google Scholar 

  26. D. Dastan, J. Atomic, Molecul. Condensate Nano Phys. 2, 109 (2015)

    Google Scholar 

  27. A. Jafari, M.H. Alam, D. Dastan, S. Ziakhodadadian, Z. Shi, H. Garmestani, A.S. Weidenbach, Ş. Ţălu, J. Mater. Sci. Mater. Electron. 30, 21185 (2019)

    CAS  Google Scholar 

  28. D. Dastan, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  Google Scholar 

  29. F. Buciuman, F. Patcas, R. Craciun, D.R.T. Zahn, Phys. Chem. Chem. Phys. 1, 185 (1999)

    CAS  Google Scholar 

  30. C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, J.P. Pereira-Ramos, Solid State Ion. 159, 345 (2003)

    CAS  Google Scholar 

  31. J. Yang, L. Wang, Z. Ma, M. Wei, J. Colloid Interface Sci. 534, 15 (2019)

    Google Scholar 

  32. J. Xu, X. Fan, Q. Xia, Z. Shao, B. Pei, Z. Yang, Z. Chen, W. Zhang, J. Alloy. Compd. 685, 949 (2016)

    CAS  Google Scholar 

  33. P. Rosaiah, J. Zhu, D.P.M.D. Shaik, O.M. Hussain, Y. Qiu, L. Zhao, J. Electroanal. Chem 794, 78 (2017)

    CAS  Google Scholar 

  34. K. Xiao, J.-W. Li, G.-F. Chen, Z.-Q. Liu, N. Li, Y.-Z. Su, Electrochim. Acta. 149, 341 (2014)

    CAS  Google Scholar 

  35. M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 16, 3184 (2004)

    CAS  Google Scholar 

  36. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)

    CAS  Google Scholar 

  37. D. Li, F. Meng, X. Yan, L. Yang, H. Heng, Y. Zhu, Nanoscale Res. Lett. (2013). https://doi.org/10.1186/1556-276X-8-535

    Article  Google Scholar 

  38. C. Pean, C. Merlet, B. Rotenberg, P.A. Madden, P.-L. Taberna, B. Daffos, M. Salanne, P. Simon, ACS Nano 8, 1576 (2014)

    CAS  Google Scholar 

  39. A.C. Forse, J.M. Griffin, C. Merlet, J. Carretero-Gonzalez, A.-R.O. Raji, N.M. Trease, C.P. Grey, Nat. Energy 2, 16216 (2017)

    Google Scholar 

  40. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Nanoscale 6, 12120 (2014)

    CAS  Google Scholar 

  41. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng, J. Power Sources 184, 691 (2008)

    CAS  Google Scholar 

  42. X. Wang, A.Y. Mehandzhiyski, B. Arstad, K.L. VanAken, T.S. Mathis, A. Gallegos, Z. Tian, D. Ren, E. Sheridan, B.A. Grimes, D.E. Jiang, J. Wu, Y. Gogotsi, D. Chen, J. Am. Chem. Soc. 139, 18681 (2017)

    CAS  Google Scholar 

  43. G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Electrochim. Acta 92, 205 (2013)

    CAS  Google Scholar 

  44. Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Adv. Energy Mater. (2014). https://doi.org/10.1002/aenm.201400064

    Article  Google Scholar 

  45. H. Gao, F. Xiao, C.B. Ching, H. Duan, A.C.S. Appl, Mater. Interfaces 4, 2801 (2012)

    CAS  Google Scholar 

  46. L. Deng, Z. Hao, J. Wang, G. Zhu, L. Kang, Z. Liu, Electrochim. Acta. 89, 191 (2013)

    CAS  Google Scholar 

  47. Y. Liu, D. He, H. Wu, J. Duan, Y. Zhang, Electrochim. Acta. 164, 154 (2015)

    CAS  Google Scholar 

  48. E. Miniach, A. Śliwak, A. Moyseowicz, L. Fernández-Garcia, Z. González, M. Granda, R. Menendez, G. Gryglewicz, Electrochim. Acta. 240, 53 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Science and Technology of Taiwan for its financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

W-DY conceived and designed the experiments, T-YF performed the experiments; Y-ZZ and Y-CL analyzed the data; and T-YF wrote the paper.

Corresponding author

Correspondence to Wein-Duo Yang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, TY., Zeng, YZ., Liu, YC. et al. High-performance asymmetric supercapacitors fabricated by amorphous MnO2 on 3D-Ni foam as positive electrodes in a mixed electrolyte. J Mater Sci: Mater Electron 31, 7672–7682 (2020). https://doi.org/10.1007/s10854-020-03303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03303-z

Navigation