Skip to main content
Log in

Study on discharge voltage and discharge capacity of LiFe1−xMnxPO4 with high Mn content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rod-like LiFe1−xMnxPO4/C cathode with particle size of about 300–500 nm was fabricated successfully via simple hydrothermal method. By means of adjusting the manganese content of LiFe1−xMnxPO4, the electrochemical property was studied to clarify the effect of manganese content. LiFe1−xMnxPO4/C sample with x = 0.70 showed the superior specific discharge capacity of 153.1 mAh g−1 at a rate of 0.1 C, and the electrochemical mechanism analyzed by electrochemical impedance spectra demonstrated that the LiFe0.30Mn0.70PO4/C exhibited the smallest charge transfer impedance and the largest lithium-ion diffusion coefficient. With the increase of manganese content, the reduction of discharge capacity is attributed to the linear decrease of Mn2+/Mn3+ reduction reaction. When x = 0.80, the two discharge platforms located at 3.5 and 3.9 V, respectively, reach a maximum, which result from the reduction electromotive force of Fe2+/Fe3+ affected by the addition of manganese ions since the discharge platform of LiMnPO4 is higher than that of LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor. Chem. Mater. 22, 1392–1401 (2010)

    Article  CAS  Google Scholar 

  2. S. Hussain, X. Yang, M.K. Aslam, A. Shaheen, Robust TiN nanoparticles polysulfide anchor for Li-S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 27, 123595 (2019)

    Article  Google Scholar 

  3. T. Li, X. Bai, U. Gulzar, Y.-J. Bai, C. Capiglia, A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 29, 1901730 (2019)

    Article  Google Scholar 

  4. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)

    Article  CAS  Google Scholar 

  5. X.C. Wang, Y.D. Huang, D.Z. Jia, Z.P. Guo, D. Ni, M. Miao, Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material. J. Solid State Electrochem. 16(1), 17–24 (2012)

    Article  CAS  Google Scholar 

  6. O. Toprakci, H.A.K. Toprakci, L. Ji, X. Zhang, Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for recharge able lithium-ion batteries. ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012)

    Article  CAS  Google Scholar 

  7. C. Delacourt, P. Poizot, M. Morcrette, J.M. Tarascon, C. Masquelier, One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93–99 (2004)

    Article  CAS  Google Scholar 

  8. G.H. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid-State Lett. 5(6), A135–A137 (2002)

    Article  CAS  Google Scholar 

  9. X.G. Yin, K.L. Huang, S.Q. Liu, H.Y. Wang, H. Wang, Preparation and characterization of Na-Doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J. Power Sour 195, 4308–4312 (2010)

    Article  CAS  Google Scholar 

  10. Z. Huang, P.F. Luo, D.X. Wang, Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode. J. Phys. Chem. Solids 102, 115–120 (2017)

    Article  Google Scholar 

  11. M. Pivko, M. Bele, E. Tchernychova, N.Z. Logar, R. Dominko, M. Gaberscek, Synthesis of nanometric LiMnPO4 via a two-step technique. Chem. Mater. 24(6), 1041–1047 (2012)

    Article  CAS  Google Scholar 

  12. J. Ding, Z. Su, Y. Zhang, Two-step synthesis of nanocomposite LIFEPO4/C cathode materials for lithium ion batteries. New J. Chem. 40, 1742–1746 (2016)

    Article  CAS  Google Scholar 

  13. Y. Oh, S. Nam, S. Wi, J. Kang, T. Hwang et al., Effective wrapping of graphene on individual Li4Ti5O12 grains for high- rate Li-ion batteries. J. Mater. Chem. A 2, 2023–2027 (2014)

    Article  CAS  Google Scholar 

  14. J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton, C. Kim, J. Cabana, Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries. Chem. Mater. 26, 3128–3134 (2014)

    Article  CAS  Google Scholar 

  15. S. Nam, S.J. Yang, S. Lee, J. Kim, J. Kang et al., Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in Lithium battery anodes. Carbon 85, 289–298 (2015)

    Article  CAS  Google Scholar 

  16. R. He, L.H. Zhang, X. Bai, Z.F. Liu, The effect of heat preservation time on the electrochemical properties of LiFePO4. IOP Conf. Ser 274, 012105 (2017)

    Article  Google Scholar 

  17. Y.J. Wu, Y.J. Gu, Y.B. Chen, H.Q. Liu, Effect of Lithium phosphate on the structural and electrochemical performance of nanocrystalline LiFePO4 cathode material with Iron defects. Int. J. Hydrog. Energy 43, 2050–2056 (2018)

    Article  CAS  Google Scholar 

  18. C.Y. Li, G.J. Li, X.M. Guan, Synthesis and electrochemical performance of micro-nano structured LiFe1xMnxPO4/C (0≤x≤0.05) cathode for Lithium-Ion batteries. J. Energy Chem. 27, 923–929 (2017)

    Article  Google Scholar 

  19. H.Q. Liu, Q. Su, C.H. Yuan, T. Yuan, Y.J. Gu, H.Z. Cui, Phase structure and electrochemical performance control of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 based on the concentration adjustment in a molten salt synthesis system. J. Appl. Electrochem. 47, 691–698 (2017)

    Article  CAS  Google Scholar 

  20. G. Gao, A.F. Liu, Z.H. Hu, Y.Y. Xu, Y.F. Liu, Synthesis of LiFePO4/C as cathode material by a novel optimized hydrothermal method. Rare Met. 30(5), 433 (2011)

    Article  Google Scholar 

  21. X.W. Liu, X.S. Qin, X.J. Wang, X. Li, S. Chen, Synthesis and Performance of LiFexMn1−xPO4/C as cathode material for Lithium Ion batteries. J Wuhan Univ Technol-Mater Sci Ed 3(4), 655–659 (2015)

    Article  Google Scholar 

  22. X. Zhou, Y. Xie, Y.F. Deng, X.S. Qin, G.H. Chen, The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant assisted solid state method and carbon coating. J Mater Chem A 3(3), 996–1004 (2015)

    Article  CAS  Google Scholar 

  23. M.S. Kim, J.P. Jegal, K.C. Roh, K.B. Kim, synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate Lithium ion batteries. J Mater Chem A 2, 10607–10613 (2014)

    Article  CAS  Google Scholar 

  24. W. Liu, P. Gao, Y.Y. Mi, J.T. Chen, H.H. Zhou, X.X. Zhang, Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate Lithium ion batteries. J. Mater. Chem. A 1, 2411–2417 (2013)

    Article  CAS  Google Scholar 

  25. Y.P. Huang, T. Tao, Z. Chen, W. Han, Y. Wu et al., Excellent electrochemical performance of LiFe0.4Mn0.6PO4 microspheres produced using a double carbon coating process. J. Mater. Chem. A 2, 18831–18837 (2014)

    Article  CAS  Google Scholar 

  26. P. Nie, L.F. Shen, F. Zhang, L. Chen, H.F. Deng, X.G. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for Lithium-Ion batteries. CrystEngComm 14, 4284–4288 (2012)

    Article  CAS  Google Scholar 

  27. X.L. Pan, C.Y. Xu, L. Zhen, Synthesis of LiMnPO4 microspheres assembled by plates wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm 14, 6412–6418 (2012)

    Article  CAS  Google Scholar 

  28. C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301–306 (2008)

    Article  CAS  Google Scholar 

  29. J. Wang, Y.J. Gu, W.L. Kong, H.Q. Liu, Y.B. Chen, W. Liu, Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics 327, 11–17 (2018)

    Article  CAS  Google Scholar 

  30. B. Zhang, X.J. Wang, H. Li, X.J. Huang, Electrochemical performances of LiFe1−xMnxPO4 with high Mn content. J. Power Sour. 196, 6992–6996 (2011)

    Article  CAS  Google Scholar 

  31. L. Chen, Y.Q. Yuan, X. Feng, M.W. Li, Enhanced electrochemical properties of LiFe1−xMnxPO4/C composites synthesized from FePO4·2H2O nanocrystallites. J. Power Sour. 214, 344–350 (2011)

    Article  Google Scholar 

  32. J. Ding, Z. Sun, H.-L. Tian, Synthesis of high rate performance LiFe1−xMnxPO4/C composites for lithium-ion batteries. Ceram Int. 42(10), 12435–12440 (2016)

    Article  CAS  Google Scholar 

  33. X.F. Wang, D. Zhang, X. Yu, R. Cai, Z.P. Shao, X.Z. Liao, Z.F. Ma, Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4. J. Alloys Compd. 492, 675–680 (2010)

    Article  CAS  Google Scholar 

  34. Z.J. Dai, L. Wang, F.P. Ye, C.C. Huang, J.X. Wang et al., Influence of anion species on the morphology of solvothermal synthesized LiMn0.9Fe0.1PO4. Electrochim. Acta 134, 13–17 (2014)

    Article  CAS  Google Scholar 

  35. J.W. Xiong, Y.Z. Wang, Y.Y. Wang, J.X. Zhang, PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C nanorods as cathode material for Lithium Ion batteries. Ceram Int. 42, 9018–9024 (2016)

    Article  CAS  Google Scholar 

  36. V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, J. Mater, LiMnPO4—a next generation cathode material for lithium-ion batteries. J. Mater. Chem. A1, 3518–3539 (2013)

    Article  Google Scholar 

  37. D. Choi, D.H. Wang, I.T. Bae, J. Xiao, Z.M. Nie et al., LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett. 10, 2799–2805 (2010)

    Article  CAS  Google Scholar 

  38. M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). J. Electrochem. Soc. 151(9), A1352–A1356 (2004)

    Article  CAS  Google Scholar 

  39. S. Hussain, Muhammad Sufyan Javed, Sumreen Asim, Asma Shaheen, Abdul Jabbar Khan, Novel Gravel-Like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int. 46, 6406–6412 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from Shandong Natural Science Foundation Project (Grant No. ZR2015EM013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-quan Liu or Yi-jie Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Sm., Bai, X., Liu, R. et al. Study on discharge voltage and discharge capacity of LiFe1−xMnxPO4 with high Mn content. J Mater Sci: Mater Electron 31, 7742–7752 (2020). https://doi.org/10.1007/s10854-020-03311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03311-z

Navigation