Skip to main content

Advertisement

Log in

Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the regenerated porous cellulose films were properly prepared by dissolving different masses of cellulose (4%, 6%, 8%) in LiCl/DMAc solvent though a simple phase inversion process and as separator (CLD-4, CLD-6, CLD-8) for the assembled supercapacitors (ABSC-4, ABSC-6, ABSC-8). The investigation on the different masses of cellulose indicated that CLD-8 film showed a stronger hydrogen bond interaction, higher thermal stability and better tensile strength. In addition, CLD-8 has good lyophilicity (101.1°), high porosity (58.43%), and electrolyte absorption (329.30%). Furthermore, different cellulose films as separator were used for assembling supercapacitor. Compared with ABSC-4 and ABSC-6, ABSC-8 showed a lower equivalent series resistance of 0.37Ω, a higher charge-discharge efficiency of 98.87% at 1 A/g, and areal capacitance of 1.16 F/cm2 at 5 mV/s. ABSC-8 also showed a superior capacity retention of 92.09% over 4000 cycles at 1 A/g. So, CLD-8 film has a potential to be used as separator for supercapacitor. Furthermore, the comparative analysis of supercapacitors assembled by CLD-8 separator and two commercial separators were conducted. The results show that ABSC-8 showed a higher value of 25.94 Wh/kg at 0.5 A/g with a powder density of 0.36 kW/kg, a lower voltage drops below 0.02 V at 1.0, and 3.0 A/g, a higher specific capacitance of 123 F/g at 0.5 A/g. Moreover, ABSC-8 maintained their quasi-rectangular and symmetrical triangular profiles of the CV and GCD curves in 0–1 and 0–1.5 V, respectively, suggesting the applicability of a wide working potential window. These results provide insights into the full use of natural and biodegradable cellulose film prepared by a simple phase inversion as separators for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Tang, L. Han, L. Zhang, Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapator electrodes. ACS Appl. Mater. Interfaces 6, 10506–10515 (2014)

    CAS  Google Scholar 

  2. C. Wang, X. Wang, H. Lu, H. Li, X.S. Zhao, Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors. Carbon 140, 139–147 (2018)

    CAS  Google Scholar 

  3. Z. Peng, Y. Zou, S. Xu, W. Zhong, W. Yang, High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based cellulose hydrogels. ACS Appl. Mater. Interfaces 10, 22190–22200 (2018)

    CAS  Google Scholar 

  4. H. Zhang, X. Wang, Y. Liang, Preparation and characterization of a lithium-ion battery separator from cellulose nanofibers. Heliyon 1, e00032 (2015)

    Google Scholar 

  5. K. Sun, D.A. Juarez, H. Huang, E. Jung, S.J. Dillon, Aqueous lithium-ion batteries on paper substrates. J. Power Sources 248, 582–587 (2014)

    CAS  Google Scholar 

  6. C. Wan, Y. Jiao, J.A. Li, Cellulose fibers-supported hierarchical forest-like cuprous oxidecopper array architecture as a flexible and free-standing electrode for symmetric supercapacitors. J. Mater. Chem. A 5, 17267–17278 (2017)

    CAS  Google Scholar 

  7. Y. Ma, X.L. Xie, R.H. Lv, B. Na, J.B. OuYang, H.S. Liu, Nanostructured polyaniline–cellulose papers for solid-state flexible aqueous Zn-ion Battery. ACS. Sustain. Chem. Eng. 6, 8697–8703 (2018)

    CAS  Google Scholar 

  8. B. Chang, J. Chen, M.G. Z, X.J. Z, W.W. Prof, B.D. Prof, S.H. Prof, Y.S. He, Three-dimensional graphene-based N-doped carbon composites as high-performance anode materials for sodium-ion batteries. Chem-Asian. J. 13, 3859–3864 (2018)

    CAS  Google Scholar 

  9. J. Fei, Y.L. Cui, J.Y. Li, Z.W. Xu, J. Yang, R.Y. Wang, Y.Y. Cheng, J.F. Hang, A flexible Sb2-O3/carbon cloth composite as free-standing high performance anode for sodium-ion batteri-es. Chem. Commun. 53, 13165–13167 (2017)

    CAS  Google Scholar 

  10. T. Zhang, L. Yang, X. Yan, X. Ding, Recent advances of cellulose-based materials and their promising application in sodium-ion batteries and capacitors. Small 14, 1802444 (2018)

    Google Scholar 

  11. L. Li, F.X. Lu, C. Wang, F.L. Zhang, W.H. Liang, S.G. Kuga, Z.C. Dong, Y. Zhao, Y. Huang, M. Wu, Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. J. Mater. Chem. A 6, 24468–24478 (2018)

    CAS  Google Scholar 

  12. H. Zhu, W. Luo, P.N. Ciesielski, Z.Q. Fang, J.Y. Zhu, G. Henriksson, M.E. Himmel, L.B. Hu, Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016)

    CAS  Google Scholar 

  13. N. Pavlin, S.L. Hribernik, G. Kapun, S.D. Talian, C.N. Dedryvere, R. Dominko, The role of cellulose based separator in lithium sulfur batteries. J. Electrochem. Soc. 166, 5237–5243 (2018)

    Google Scholar 

  14. S. Taira, M. Kurihara, K. Koda, K. Sugimura, Y.Y. Nishio, Y. Uraki, Tempo-oxidized cellulose nanofiber-reinforced lignin based polyester films as a separator for electridouble-layer capacitor. Cellulose 26, 569–580 (2018)

    Google Scholar 

  15. X. Sun, C.T. Mei, A.D. French, S.Y. Lee, Y. Wang, Q.L. Wu, Surface wetting behavior of nanocellulose-based composite films. Cellulose 25, 5071–5087 (2018)

    CAS  Google Scholar 

  16. Z. Wang, Y.S. Xie, C.H. Xu, S.Y. Shi, L. Wang, G.H. Zhang, X.Q. Wang, L.Y. Zhu, D. Xu, Zirconia fiber membranes based on PVDF as high-safety separators for lithium-ion batteries using a papermaking method. J. Solid State Electron. 23, 269–276 (2018)

    Google Scholar 

  17. Q. Xu, Q.S. Kong, Z.H. Liu, X.J. Wang, R.Z. Liu, L.P. Yue, Y.L. Duan, G.L. Cui, Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery sepa-rator. ACS. Sustain. Chem. Eng. 2, 194–199 (2013)

    Google Scholar 

  18. T. FO’Connor, A.V. Zaretski, S. Savagatrup, A.D. Printz, C.D. Wilkes, M. Diaz, E.J. Sawyer, D.J. Lipomiet, Wearable organic solar cells with high cyclic bending stability: materials selection criteria. Sol. Energy Mater. Sol. Cells 144, 438–444 (2016)

    Google Scholar 

  19. F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Wineyet, Nanotube network in polymer nanocomposites:rheology and electrical conductivity. Macromolecules 37, 9048–9055 (2004)

    CAS  Google Scholar 

  20. H. Wang, X.Y. Shen, G.X. Tian, X.S.,W. Huang, Y. Guang, W.L. Sun, C. Peng, S.S. Liu, Y. Huang, X.Y. Chen, F. Zhang, Y.J. Chen, W.L. Ding, Z.B. Lu, Ampkα2 deficiency exacerbates long-term PM2.5 exposure-induced lung injury and cardiac dysfunction. Free Radical Bio. Med. 121, 202–214 (2018)

    CAS  Google Scholar 

  21. M. Yu, J. Li, L. Wang, KOH-activated carbon aerogels derived from sodium carboxymethcellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 31, 300–306 (2017)

    Google Scholar 

  22. X. Yang, L. Kong, J. Ma, X. Liu, Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor. J. Appl. Electrochem. 49, 241–250 (2018)

    Google Scholar 

  23. C. Wan, J. Li, Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application for electromagnetic interference shielding. Front. Chem. Sci. Eng. 2, 341–346 (2015)

    Google Scholar 

  24. Y. Yang, Z. Tong, T. Ngai, C. Wang, Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl. Mater. Interfaces 6, 6351–6360 (2014)

    CAS  Google Scholar 

  25. Z. Yang, J. Ren, Z.T. Zhang, X.L. Chen, G.Z. Guan, L.B. Qiu, Y. Zhang, H.S. Peng, Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015)

    CAS  Google Scholar 

  26. Q. Yao, H. Wang, C. Wang, C. Jin, Q. Sun, One step construction of nitrogen–carbon derived from bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator. ACS. Sustain. Chem. Eng. 6, 4695–4704 (2018)

    CAS  Google Scholar 

  27. Z. Du, Y.Z. Su, Y.Y. Qu, L.Z. Zhao, X.B. Jia, Y. Mo, F. Yu, J. Du, Y. Chen, A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochem. Acta 299, 19–26 (2019)

    CAS  Google Scholar 

  28. L. Yue, Y.J. Xie, Y.D. Zheng, W. He, S.L. Guo, Y. Sun, T. Zhang, S. Liu, Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos. Sci. Technol. 145, 122–131 (2017)

    CAS  Google Scholar 

  29. W. Chen, L.P. Zhang, C.T. Liu, X.M. Feng, J.M. Zhang, L.Q. Guan, L.W. Mi, S.Z. Cui, Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups. ACS Appl. Mater. Interfaces 10, 23883–23890 (2018)

    CAS  Google Scholar 

  30. S. Wang, D. Zhang, Z. Shao, S. Liu, Cellulosic materials-enhanced sandwich structure-like separator via electrospinning towards safer lithium-ion battery. Carbohydr. Polym. 214, 328–336 (2019)

    CAS  Google Scholar 

  31. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  Google Scholar 

  32. A. Razaq, L. Nyholm, M. Sjödin, M. Strømme, A. Mihranyan, Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Adv. Energy Mater. 2, 445–454 (2012)

    CAS  Google Scholar 

  33. Y. Li., G.Y. Ren, Z.Q. Zhang, C. Teng, Y.Z. Wu, X.Y. Lu, Y. Zhu, L. Jiang, A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors with superior cycling stability. J. Mater. Chem. A 4, 17324–17332 (2016)

    CAS  Google Scholar 

  34. J. Luo, F.R. Fan, T. Jiang, Z.W. Wang, W. Tang, C.P. Zhang, M.M. Liu, G.Z. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 8, 3934–3943 (2015)

    Google Scholar 

  35. R. Pan, O. Cheung, Z.H. Wang, P. Tammela, J.X. Huo, J. Lindh, K. Edströma, M. Strømme, L. Nyholma, Mesoporous cladophora cellulose separators for lithium-ion batteries. J. Power Sources 321, 185–192 (2016)

    CAS  Google Scholar 

  36. H. Wang, H. Gao, A sandwich-like composite nonwoven separator for lion batteries electrochim. Acta 215, 525–534 (2016)

    CAS  Google Scholar 

  37. A. Sharma, A.K. Rath, Improved performance and reproducibility of perovskite solar cells by jointly tuning the hole transport layer and the perovskite layer deposition. J. Mater. Sci. 29, 12652–12661 (2018)

    CAS  Google Scholar 

  38. X. Zhong, J. Tang, L.J. Cao, W.G. Kong, Z. Sun, H. Cheng, Z.G. Lua, H. Pan, B.M. Xu, Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochim. Acta 244, 112–118 (2017)

    CAS  Google Scholar 

  39. C.M. Costa, H.M. Rodrigues, A. Gören, P.V. Machado, P.M. Silva, P.S. Lanceros-Ménde, Preparation of poly(vinylidene fluoride) lithium-ion battery separators and their compatibilization with lonic liquid-A green solvent approach. ChemistrySelect 2, 5394–5402 (2017)

    CAS  Google Scholar 

  40. H. Xu, X.L. Hu, Y.M. Sun, H.L. Yang, X.X. Liu, Y.H. Huang, Flexible fiber-shaped sup-ercapacitors based on hierarchically nanostructuredcomposite electrodes. Nano Res. 8, 1148–1158 (2014)

    Google Scholar 

  41. L. Cao, M.Y. Yang, D. Wu, F.C. Lyu, Z.F. Sun, X.W. Zhong, H. Pan, H.T. Liu, Z.G. Lu, Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electroche-mical energy storage. Chem. Commun. 53, 1615–1618 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (2018GXNSFBA138025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongying Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, G., Lin, S., Xu, D. et al. Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors. J Mater Sci: Mater Electron 31, 7916–7926 (2020). https://doi.org/10.1007/s10854-020-03330-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03330-w

Navigation