Skip to main content
Log in

Rietveld analysis, magnetic, transport, and optical properties of (1 − x)BiFeO3–(x)Pb(Zr0.52Ti0.48)O3 ceramics prepared by sol–gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb(Zr0.52Ti0.48)O3 (PZT)-modified samples of BiFeO3 (BFO) were synthesized by a sol–gel method in composition range 0.0 ≤ x ≤ 0.15 to see the effect of PZT on structural, optical, dielectric, and magnetic properties of BFO ceramics. It is demonstrated that the PZT-modified BFO can expressively improve the dielectric and magnetic properties. Structural analysis was carried out with the Rietveld FullProf program, revealed that changes in lattice parameters and stability of rhombohedral structure with R3c symmetry up to x = 0.15 dilution of PZT. Structural distortion and strain were calculated by the Williamson–Hall approach. Moreover, a significant improvement in magnetization at room temperature was achieved for PZT-modified samples ascribed to the disturbance in the spin cycloid arrangement of Fe ions. PZT-modified BFO samples are showing better dielectric properties than undoped BFO attributed to suppression of Bi and oxygen vacancies. Our results demonstrate that the significant role of PZT can be seen in conductivity vs. 1000/T plots and the appearance of dissimilar kinds of conduction mechanisms in the different linear regions. Optical studies were performed in the 1 eV–4.5 eV spectral range and the calculated optical bandgap was found to decrease with PZT doping. The results of infrared spectroscopy show shifts of IR phonon modes in the lower wavenumber side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig.5
Fig.6
Fig. 7
Fig. 8
Fig.9
Fig. 10

Similar content being viewed by others

References

  1. T. Kimura, T. Goto, H. Shinatani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003)

    Article  CAS  Google Scholar 

  2. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004)

    Article  CAS  Google Scholar 

  3. J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature 434, 364–367 (2005)

    Article  CAS  Google Scholar 

  4. W. Prellier, M.P. Singh, P. Murugavel, J. Phys.: Condens. Matter 17, R803–R832 (2005)

    CAS  Google Scholar 

  5. L.Y. Wang, D.H. Wang, H.B. Huang, Z.D. Han, Q.Q. Cao, B.X. Gu, Y.W. Du, J. Alloys Compd. 469, 1–3 (2009)

    Article  CAS  Google Scholar 

  6. S. Sharma, V. Singh, O. Parkash, R.K. Dwivedi, Appl. Phys. A 112, 975–984 (2013)

    Article  CAS  Google Scholar 

  7. S. Sharma, V. Singh, R.K. Dwivedi, AIP Conf. Proc. 2009, 020017 (2018)

    Article  Google Scholar 

  8. S. Sharma, V. Singh, R. Dwivedi, R. Ranjan, A. Anshul, S. Amritphale, N. Chandra, J. Appl. Phys. 115, 224106–224107 (2014)

    Article  Google Scholar 

  9. J. Bennett, A.J. Bell, T.J. Stevenson, R.I. Smith, I. Sterianou, I.M. Reaney, T.P. Comyn, Mater. Lett. 94, 172 (2013)

    Article  CAS  Google Scholar 

  10. M.I. Morozov, M.-A. Einarsrud, T. Grande, D. Damjanovic, Ferroelectrics 439, 88 (2012)

    Article  CAS  Google Scholar 

  11. M.I. Morozov, M.-A. Einarsrud, T. Grande, Appl. Phys. Lett. 101, 252904 (2012)

    Article  Google Scholar 

  12. Z. Huang, X.M. Lu, W.W. Lin, X.M. Wu, Y. Kan, J.S. Zhu, Appl. Phys. Lett. 89, 242914 (2006)

    Article  Google Scholar 

  13. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, A.L. Kholkin, Appl. Phys. Lett. 93, 262905 (2008)

    Article  Google Scholar 

  14. A. Mukherjee, M. Hossain, S. Basu, M. Pal, Appl. Nanosci. 2, 305 (2012)

    Article  CAS  Google Scholar 

  15. S. Sharma, R.K. Dwivedi, J. Alloys Compd. 692, 770–773 (2017)

    Article  CAS  Google Scholar 

  16. R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Appl. Phys. 86, 131–138 (2007)

    Article  CAS  Google Scholar 

  17. C. Lan, Y. Jiang, S. Yang, J. Mater. Sci. 46, 734 (2011)

    Article  CAS  Google Scholar 

  18. V. Singh, S. Sharma, R.K. Dwivedi, J. Alloys Compd. 747, 611–620 (2018)

    Article  CAS  Google Scholar 

  19. A. Singh, V. Panday, R.K. Kotnala, D. Panday, Phys. Rev. Lett. 101, 247602 (2008)

    Article  Google Scholar 

  20. K.G. Yang, Y.L. Zhang, S.H. Yang, B. Wang, J. Appl. Phys. 107, 124109 (2010)

    Article  Google Scholar 

  21. R.D. Shannon, Acta Crystallogr. A. 32, 751–761 (1976)

    Article  Google Scholar 

  22. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  CAS  Google Scholar 

  23. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117, 194103–194115 (2015)

    Article  Google Scholar 

  24. V. Biju, N. Sugathan, V. Vrinda, L. Salin, J Mater Sci. 43, 1175–1179 (2008)

    Article  CAS  Google Scholar 

  25. Y. Wang, J. Li, J. Chen, Y. Deng, J. Appl. Phys. 113, 103904–103905 (2013)

    Article  Google Scholar 

  26. F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.T. Xu, J. He, C. Yue, J. Zhu, Sci. Rep. 3, 2907 (2013)

    Article  Google Scholar 

  27. S. Duhalde, M.F. Vignolo, F. Golmar, C. Chiliotte, C.E.R. Torres, L.A. Errico, A.F. Cabrera, M. Renterıa, F.H. Sanchez, M. Weissmann, Phys. Rev. B 72, 161313 (2005)

    Article  Google Scholar 

  28. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957–1967 (2001)

    Article  CAS  Google Scholar 

  29. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, L. Hualiang, Chem. Eng. J. 333, 519–528 (2018)

    Article  CAS  Google Scholar 

  30. G.L. Yuan, S.W. Or, H.L.W. Chan, Z.G. Liu, J. Appl. Phys. 101, 24106–24114 (2007)

    Article  Google Scholar 

  31. Z. Gao, Z. Jia, J. Zhang, A. Feng, Z. Huang, Wu Guanglei, J. Mater. Sci.: Mater. Electron. 30(14), 13474–13487 (2019)

    CAS  Google Scholar 

  32. C. Verdier, F.D. Morrison, D.C. Lupascu, J.F. Scott, J. Appl. Phys. 97, 024107 (2005)

    Article  Google Scholar 

  33. A. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504–3508 (2001)

    Article  CAS  Google Scholar 

  34. A. Pelaiz-Barranco, Y.G. Abreu, R. López-Noda, J. Phys.: Condens. Matter. 20, 505208 (2008)

    Google Scholar 

  35. R. Pisarev, A. Moskvin, A. Kalashnikova, T. Rasing, Phys. Rev. B 79, 235128 (2009)

    Article  Google Scholar 

  36. R. Lopez, R. Gomez, J. Sol-gel Sci. Technol. 61, 1 (2012)

    Article  CAS  Google Scholar 

  37. V.M. Gaikwad, S.A. Acharya, J. Appl. Phys. 114, 193901 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to CONACYT and R. K. Dwivedi, Dr. J. M. Siqueiros, Dr. O. Raymond Herrera for fruitful discussion, and Dr. Anveesh Anshul for providing VSM and optical facilities. Also, the author thankful to JIIT for providing the synthesis facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S. Rietveld analysis, magnetic, transport, and optical properties of (1 − x)BiFeO3–(x)Pb(Zr0.52Ti0.48)O3 ceramics prepared by sol–gel route. J Mater Sci: Mater Electron 31, 7776–7785 (2020). https://doi.org/10.1007/s10854-020-03316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03316-8

Navigation