Skip to main content

Advertisement

Log in

Versatile fabrication and characterization of Cu-doped ZrO2 nanoparticles: enhanced photocatalytic and photoluminescence properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pristine ZrO2 and molar ratios of Cu-doped ZrO2 nanoparticles were synthesized by chemical precipitation. The XRD pattern of pristine ZrO2 and Cu-doped ZrO2 nanoparticles shows the formation of t-tetragonal phase and shifting of tetragonal phase to monoclinic phase. The average crystallite sizes of the pristine ZrO2 and Cu-doped ZrO2 nanoparticles were calculated as 2.9, 4.65, 4.76, 5.02, and 4.96 nm, respectively. The Cu (0.06 M)-doped ZrO2 nanoparticles are present as spherical morphology and high agglomeration was confirmed by FE-SEM and TEM analyses. The XPS spectra affirmed the presence of Cu2+, Zr4+, and oxygen ions in the Cu (0.06 M)-doped ZrO2 nanoparticles. The Cu-doped ZrO2 nanoparticles exhibit two energy gaps at 5.30 and 3.05 eV, 5.21 and 2.22 eV, 4.65 and 2.11 eV, and 4.44 and 2.65 eV. The surface defects and oxygen vacancies were analyzed by PL and ESR spectroscopy. The ESR spectra are clearly asymmetric in shape and contain a peak signal related to the presence of the copper species (Cu2+) in the distorted tetragonal coordination of ZrO2. The photocatalytic activities of Cu (0.06 M)-doped ZrO2 nanoparticles were successfully sought on degradation of the two azo dyes: methyl violet and methyl blue under sunlight irradiation. Cu (0.06 M)-doped ZrO2 showed complete degradation at 70 min. The reusability of Cu (0.06 M)-doped ZrO2 nanoparticles shows maximum degradation efficiency for six successive runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Ma, J. Su, M. Liu, L. Zhang, Y. Li, L. Guo, J. Mater. Res 31, 1616 (2016)

    CAS  Google Scholar 

  2. P. Singh, A. Ojha, A. Borthakur, R. Singh, D. Lahiry, D. Tiwary, P.K. Mishra, Envir. Sci. Poll. Res. 23, 22340 (2016)

    CAS  Google Scholar 

  3. M. Xiao, Y. Li, Y. Lu, Z. Ye, J. Mater. Chem. A. 3, 2701 (2015)

    CAS  Google Scholar 

  4. S. Papić, N. Koprivanac, A.L. Božić, A. Metes, Dyes Pigments 62, 291 (2004)

    Google Scholar 

  5. Y.M. Slokar, A.M. Le Marechal, Dyes. Pigments 37, 335 (1998)

    CAS  Google Scholar 

  6. B.S. Karnik, S.H. Davies, M.J. Baumann, S., J. Masten. Environ. Sci. Technol. 39, 7656 (2005)

    CAS  Google Scholar 

  7. J.M. Prodanović, V.M. Vasić, Des. Water Treat. 51, 3325 (2013)

    Google Scholar 

  8. M. Kang, M. Kawasaki, S. Tamada, T. Kamei, Y. Magara, Desalination 131, 293–298 (2000)

    CAS  Google Scholar 

  9. W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Li, L. Zhang, D.Y. Leung, Appl. Catal. B: Environ. 245, 448 (2019)

    CAS  Google Scholar 

  10. C. Kaewtip, P. Chadpunyanun, V. Boonamnuayvitaya, Water Air Soil Pollut 223, 1455 (2012)

    CAS  Google Scholar 

  11. M.F. Abid, A.A. Abdulrahman, N.H. Hamza, J. Environ. Health Sci. Eng. 12, 145 (2014)

    Google Scholar 

  12. F. Wang, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C. 116, 8901 (2012)

    CAS  Google Scholar 

  13. H. Younas, I.A. Qazi, I. Hashmi, M.A. Awan, A. Mahmood, H.A. Qayyum, Envir. Sci. Pollut. Res. 21, 740 (2014)

    CAS  Google Scholar 

  14. J.C. Fechete, Vedrine. Mol. 20, 5638 (2015)

    CAS  Google Scholar 

  15. X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Rep. Prog. Phys. 76, 046401 (2013)

    Google Scholar 

  16. K. Thirumalai, S. Balachandran, K. Selvam, Swaminathan. Emer. Mater. Res. 5, 264 (2016)

    Google Scholar 

  17. J.B. Ruiz, W. Aperador, J.C. Gómez, J. Phys: Conf. Ser. 687, 012031 (2016)

    Google Scholar 

  18. V.S. Anitha, S.S. Lekshmy, K. Joy, J. Alloys Compd. 675, 331 (2016)

    CAS  Google Scholar 

  19. Ι. V. Markoulaki I. T. Papadas, I. Kornarakis, G. S. Armatas. Nanomaterials, 5, 1971 (2015).

  20. G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Appl. Catal. B: Environ. 250, 313 (2019)

    CAS  Google Scholar 

  21. G. Zou, H. Li, D. Zhang, K. Xiong, C. Dong, Y. Qian, J. Phys. Chem. B. 110, 1632 (2006)

    CAS  Google Scholar 

  22. Y.H. Pai, C.T. Tsai, S.Y. Fang, J. Power. Sources. 223, 107 (2013)

    CAS  Google Scholar 

  23. G.S. Pozan, A. Kambur, Chemistry 105, 152 (2014)

    CAS  Google Scholar 

  24. J. Park, K. Park, J. Kim, Y. Jeong, A. Kawasaki, & Kwon. Sci. Rep. 6, 23064 (2016)

    CAS  Google Scholar 

  25. Z. Khan, T.R. Chetia, A.K. Vardhaman, D. Barpuzary, C.V. Sastri, M. Qureshi, RSC Adv. 2, 12122 (2012)

    CAS  Google Scholar 

  26. S. Hemathangam, G. Thanapathy, S. Muthukumaran, J. Mater. Sci: Mater. Electron. 27, 2042 (2016)

    CAS  Google Scholar 

  27. C. Colbea, D. Avram, B. Cojocaru, R. Negrea, C. Ghica, V.G. Kessler, C. Tiseanu, Nanomaterials 8(12), 988 (2018)

    Google Scholar 

  28. N.P. Padture, M. Gell, E.H. Jordan, Science 296, 280 (2002)

    CAS  Google Scholar 

  29. S. López-Romero, M. García-Hipólito, A. Aguilar-Castillo, World J. Conduct. Mater. Phys. 3, 173 (2013)

    Google Scholar 

  30. Z. Yi, H. Narita, J. Mizusaki, H. Tagawa, Solid State Ionics 79, 344 (1995)

    Google Scholar 

  31. R. Li, A.E. Clark, L.L. Hench, J. Appl. Biol. 2, 231 (1991)

    CAS  Google Scholar 

  32. H. Li, Y. Wu, C. Li, Y. Gong, L. Niu, X. Liu, S. Xu, Appl. Catal. B: Environ. 251, 305 (2019)

    CAS  Google Scholar 

  33. H. Wang, G. Li, Y. Xue, L. Li, J. Solid. State Chem. 180, 2790 (2007)

    CAS  Google Scholar 

  34. W.W. Anku, S.O.B. Oppong, S.K. Shukla, E.S. Agorku, P.P. Govender, Res. Chem. Int. 42, 7231 (2016)

    CAS  Google Scholar 

  35. J.R. De la Rosa, A. Hernandez, F. Rojas, J.J. Ledezma, Colloids Surf. A: Phys. Eng. Aspects 315, 147 (2008)

    Google Scholar 

  36. F. Rahmawati, I. Permadani, E. Heraldy, D. Syarif, G. Soepriyanto, J. Am Ceram Soc 89(10), 3201–3210 (2006)

    Google Scholar 

  37. U. Troitzsch, J. Am Ceram Soc 89(10), 3201–3210 (2006)

    CAS  Google Scholar 

  38. B. Ashok, N. Nawale, S. Kanhe, S.V. Bhoraskar, V.L. Mathe, A.K. Das, Mater. Res. Bull. 47, 3432–3439 (2012)

    Google Scholar 

  39. J. Zhang, G. Zhu, S. Li, F. Rao, Q.U. Hassan, J. Gao, M. Hojamberdiev, A.C.S. Appl, Mater. Interfaces 11(41), 37822–37832 (2019)

    CAS  Google Scholar 

  40. S.R. Teeparthi, E.W. Awin, R. Kumar, Sci. Rep. 8(1), 1–11 (2008)

    Google Scholar 

  41. P. Li, I. Chen, J. Pwnnrhahn, J. Am. Ceram. Soc. 77, 118–128 (1994)

    CAS  Google Scholar 

  42. K. Gnanamoorthi, M. Balakrishnan, R. Mariappan, E.R. Kumar, Mater. Sci. Semicond Process. 30, 518 (2015)

    CAS  Google Scholar 

  43. S. Akilandeswari, G. Rajesh, D. Govindarajan, K. Thirumalai, M. Swaminathan, J. Mater. Sci: Mater. Electron. 29, 18258 (2018)

    CAS  Google Scholar 

  44. M. Alipour, D. Pudasainee, J.A. Nychka, R. Gupta, Ind. Eng. Chem. Res. 53, 10990 (2014)

    CAS  Google Scholar 

  45. S. Dadvar, H. Tavanai, M. Morshed, J. Nano. Res. 13, 5163 (2011)

    CAS  Google Scholar 

  46. Y. Liu, G. Zhu, J. Gao, M. Hojamberdiev, R. Zhu, X. Wei, P. Liu, A. Appl, Cataly. B: Environ. 200, 72–82 (2017)

    CAS  Google Scholar 

  47. G. Rajesh, S. Akilandeswari, D. Govindarajan, K. Thirumalai, Mater. Res. Express 6, 1050a9 (1050a)

    CAS  Google Scholar 

  48. J.W. Cui, Y.H. Li, L.Y. Zhao, G.H. Cui, Ultra. Sonochem. 39, 837 (2017)

    CAS  Google Scholar 

  49. F. Rao, G. Zhu, M. Hojamberdiev, W. Zhang, S. Li, J. Gao, Y. Huang, J. Phys. Chem. C 123(26), 16268–16280 (2019)

    CAS  Google Scholar 

  50. B. Choudhury, M. Dey, A. Choudhury, Int. Nano Lett. 3, 25 (2013)

    Google Scholar 

  51. T. Lopez, M. Alvarez, F. Tzompantzi, M. Picquart, J. Sol-Gel Sci. Technol. 37, 207 (2006)

    CAS  Google Scholar 

  52. S. López-Romero, M.Q. Jiménez, M.J. García-Hipólito, Condens. Matter Phys. 6(3), 269 (2016)

    Google Scholar 

  53. I.J. Berlin, Adv. Res. Sci. Eng. 6(3), 1–6 (2017)

    Google Scholar 

  54. Q. Yao, N. Liu, Z.C. Gu, G.R. Wu, B., J. Chin. Phys. B 26(10), 106801 (2017)

    Google Scholar 

  55. Y.L. Zheng, D.S. Mao, S.S. Sun, G.Y. Fu, J. Mater Sci 51(2), 917–925 (2016)

    CAS  Google Scholar 

  56. Y.A.N.G. Zhiqiang, M.A.O. Dongsen, G.U.O. Xiaoming, L.U. Guanzhong, J. Rare Earths 32(2), 117–123 (2014)

    Google Scholar 

  57. B. Tyagi, K. Sidhpuria, B. Shaik, R.V. Jasra, Ind. Eng. Chem. Res. 45, 8643 (2006)

    CAS  Google Scholar 

  58. Y. Huang, Z. Zheng, Z. Ai, L. Zhang, X. Fan, Z. Zou. J. Phys. Chem. B. 110, 19323 (2006)

    CAS  Google Scholar 

  59. G. Benedetti, F. Fagherazzi, S. Pinna, Polizzi. J. Mater. Sci. 25, 1473 (1990)

    CAS  Google Scholar 

  60. K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B. 108, 20204 (2004)

    CAS  Google Scholar 

  61. H.J. Noh, D.S. Seo, H. Kim, J.K. Lee, Mater. Lett. 57, 2425 (2003)

    CAS  Google Scholar 

  62. M. Khaksar, M. Amini, D.M. Boghaei, K.H. Chae, S. Gautam, Catal. Commun. 72, 1 (2015)

    CAS  Google Scholar 

  63. J. Okabayashi, S. Kono, Y. Yamada, K. Nomura, AIP Adv. 1, 042138 (2011)

    Google Scholar 

  64. N.H. Hong, M.B. Kanoun, S. Goumri-Said, J.H. Song, E. Chikoidze, Y. Dumont, M. Kurisu, J. Phys. Cond. Mater. 25, 436003 (2013)

    Google Scholar 

  65. W.W. Anku, S.O.B. Oppong, S.K. Shukla, E.S. Agorku, P.P. Govender, Prog. Nat. Sci. Mater. Inter. 26, 354 (2016)

    CAS  Google Scholar 

  66. S. Ramya, G. Viruthagiri, R. Gobi, N. Shanmugam, N. Kannadasan, J. Mater. Sci. Mater. Elect. 27, 2701 (2016)

    CAS  Google Scholar 

  67. P. Ji, Z. Mao, Z. Wang, X. Xue, Y. Zhang, J. Lv, X. Shi Nanomaterials 9(7), 983 (2019)

    CAS  Google Scholar 

  68. M. W. Kadi, R. M. Mohamed. Int. J. Photoenergy (2013).

  69. R.C. Ramola, M. Rawat, K. Joshi, A. Das, S.K. Gautam, F. Singh, Mater. Res. Exp. 4, 096401 (2017)

    Google Scholar 

  70. C.T. Ho, T.H. Weng, C.Y. Wang, S.J. Yen, T.R. Yew, RSC Adv. 4, 20053 (2014)

    CAS  Google Scholar 

  71. V.I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade, A. Kassiba, H. Cryst. Eng. Commun. 17, 3366 (2015)

    CAS  Google Scholar 

  72. K. Joy, I.J. Berlin, P.B. Nair, J.S. Lakshmi, G.P. Daniel, P.V. Thomas, J. Phys. Chem. Sol. 72, 673 (2011)

    CAS  Google Scholar 

  73. J. Berlin, L.V. Maneeshya, J.K. Thomas, P.V. Thomas, K. Joy, J. Lumin. 132, 3077 (2012)

    CAS  Google Scholar 

  74. T. Ravichandran, K.C.S. Pushpa, K. Ravichandran, K. Karthika, B.M. Nagabhushana, S. Mantha, K. Swaminathan, Superlatt. Microstruct. 75, 533 (2014)

    CAS  Google Scholar 

  75. D. Prakashbabu, R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradar, R. Chandramohan, Spectrochim. Acta Part A: Mol. Biom. Spectr. 122, 216 (2014)

    CAS  Google Scholar 

  76. N. Salah, S.S. Habib, Z.H. Khan, F. Djouider, Rad. Phys. Chem. 80, 923 (2011)

    CAS  Google Scholar 

  77. D. Fang, Z. Luo, S. Liu, T. Zeng, L. Liu, J. Xu, W. Xu, Opt. Mater. 35, 1461 (2013)

    CAS  Google Scholar 

  78. K. Anandan, V. Rajendran (2013).

  79. N.C.S. Sagaya, A. Manikandan, L.J. Kennedy, J.J. Vijaya, J. Colloids Interfaces Sci. 389, 91 (2013)

    Google Scholar 

  80. J. Liang, Z. Deng, X. Jiang, F. Li, Y. Li, Inorg. Chem. 41, 3602 (2002)

    CAS  Google Scholar 

  81. E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, A.K. Mishra, J. Rare Earth 33, 498 (2015)

    CAS  Google Scholar 

  82. K. Remmel, H. Jiang, X. Tang, J. Dong, X. Lan, H. Xiao, Sens. Actuators B Chem. 160, 533 (2011)

    CAS  Google Scholar 

  83. K. Kumar, N.K. Singh, H.S. Park, O. Parkash, RSC Adv. 6, 49883 (2016)

    CAS  Google Scholar 

  84. Y.S. Vidya, K. Gurushantha, H. Nagabhushana, S.C. Sharma, K.S. Anantharaju, C. Shivakumara, M.R. Anilkumar, J. Alloys Compd. 622, 86 (2015)

    CAS  Google Scholar 

  85. S. Gowri, R.R. Gandhi, M. Sundrarajan, J. Mater. Sci. Technol. 30, 782 (2014)

    CAS  Google Scholar 

  86. B. Wan, X. Shu, X. Chen, Q. Feng, Solid State Sci. 27, 73 (2014)

    CAS  Google Scholar 

  87. C. McManamon, J.D. Holmes, M.A. Morris, J. Hazard. Mater. 193, 120 (2011)

    CAS  Google Scholar 

  88. M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sanchez, Fuel 181, 670 (2016)

    CAS  Google Scholar 

  89. R.W. Liu, Z.Z. Qin, H.B. Ji, T.M. Su, Ind. Eng. Chem. Res. 52, 16648 (2013)

    CAS  Google Scholar 

  90. S.G. Charanpahari, S.S. Ghugal, R. Umare, Sasikala. J. Chem. 39, 3629–3638 (2015)

    CAS  Google Scholar 

  91. W. Keller, H. Vosti, A. Wang, Lazareva. J. Nanopart. Res. 16, 2489 (2014)

    Google Scholar 

  92. H. Wang, X. Liu, S. Han, Cryst. Eng. Commun. 18, 1933 (2016)

    CAS  Google Scholar 

  93. N. Korsunska, Y. Polishchuk, M. Baran, V. Nosenko, I. Vorona, S. Lavoryk, L. Khomenkova, Front. Mater. 5, 23 (2018)

    Google Scholar 

  94. J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 46, 1900 (2013)

    CAS  Google Scholar 

  95. S. Abry, A. Thibon, B. Albela, P. Delichère, F. Banse, L. Bonneviot, New J. Chem. 33, 484 (2009)

    CAS  Google Scholar 

  96. P.F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert, A. Markosyan, R. Route, Appl Optics. 53, A276 (2014)

    CAS  Google Scholar 

  97. A. Schepetkin, A. Potapov, E. Khlebnikov, A. Korotkova, G. Lukina, M.T. Malovichko, Quinn. JBIC. J. Biol. Inorg. Chem. 11, 499 (2006)

    CAS  Google Scholar 

  98. M.R. Porter, S.E. Lindahl, A. Lietzke, E.M. Metzger, Q. Wang, E. Henck, J.M. Zaleski, Proc. Natl Acad. Sci. USA 114, E7405 (2017)

    CAS  Google Scholar 

  99. Z.G. Lada, Y. Sanakis, C.P. Raptopoulou, V. Psycharis, S.P. Perlepes, G. Mitrikas, Dalton Trans. 46, 8458 (2017)

    CAS  Google Scholar 

  100. T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, J. Nanopart. Res. 17, 288 (2015)

    Google Scholar 

  101. S. Vadivel, G. Rajarajan, J. Mater. Sci. Mater. Electron. 26, 5863 (2015)

    CAS  Google Scholar 

  102. V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, Sensors 13, 14813–14838 (2013)

    Google Scholar 

  103. T. Morikawa, R. Asahi, T. Ohwaki, Toyota CRDL 40, 45–50 (2005)

    CAS  Google Scholar 

  104. T.M. Suzuki, G. Kitahara, T. Arai, Y. Matsuoka, T. Morikawa, Chem. Commun. 50, 7614–7616 (2014)

    CAS  Google Scholar 

  105. K.C. Huang, S.H. Chien, Appl. Catal. B: Environ. 140–141, 283–288 (2013)

    Google Scholar 

  106. A.M. Czoska, S. Livraghi, M.C. Paganini, E.D. Giamello, C. Valentin, G. Pacchioni, Phys Chem Chem Phys 13(1), 136–143 (2011)

    CAS  Google Scholar 

  107. N. Serpone, J. Phys. Chem. B 110, 24287–24293 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. S.P. Meenakshisundaram, Former chairman, Principle investigator DST-SERB, Department of Chemistry, Annamalai University, Tamil Nadu, India, for providing UV-DRS analysis. The authors are grateful to the Researchers Supporting Project Number (RSP-2019/68), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akilandeswari Sambandam or Mohamad S. AlSalhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, R., Sambandam, A., Kuppulingam, T. et al. Versatile fabrication and characterization of Cu-doped ZrO2 nanoparticles: enhanced photocatalytic and photoluminescence properties. J Mater Sci: Mater Electron 31, 7232–7246 (2020). https://doi.org/10.1007/s10854-020-03296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03296-9

Navigation