Skip to main content

Advertisement

Log in

Critical Analysis of Threshold Stresses in the Creep Mechanisms of a Powder Metallurgy Magnesium Alloy AZ31

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, tensile tests were conducted on two powder metallurgy materials based on the AZ31 magnesium alloy. The first material, named AZ31-PM, was processed using atomized powder, followed by isostatic cold compaction at 340 MPa, plus hot extrusion at 350 °C. The second material, named AZ31-PMCM, used metal powder that was cryomilled in liquid nitrogen environment and processed as for the AZ31-PM material. Creep mechanisms were analyzed in the range 300 °C to 400 °C based on the creep laws determined previously for ingot metallurgy AZ31. Two threshold stresses, one for grain boundary sliding and the other for slip creep, both independent of temperature, were introduced, providing a consistent description of creep for the different AZ31-based materials. The variations observed in threshold stresses in the AZ31-PM material were attributed to an inhomogeneous distribution of dispersoids and satisfactorily explained by a composite type model. This method of analyzing the data is compared with the traditional one in the literature, demonstrating that the dependence of the threshold stresses with the temperature, reported in those articles, could actually be derived from the method used rather than from a real physical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.L. Mordike and T. Erbert: Magnesium: Properties - applications - potential. Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Google Scholar 

  2. I.J. Polmear: Light Alloys, 3rd ed., Arnold, London, 1995.

    Google Scholar 

  3. Magnesium and Magnesium Alloys, M.M. Avedesian, H. Baker, eds., ASM International, 1999.

  4. I.A. Anyanwu, S. Kamado, and Y. Kojima: Mater. Trans., 2001, vol. 42, pp. 1206-11.

    CAS  Google Scholar 

  5. T. Mohri, M. Mabuchi, N. Saito, and M. Nakamura: Mater. Sci. Eng. A, 1998, vol. 257, pp. 287-94.

    Google Scholar 

  6. K. Yu, W. Li, J. Zhao, Z. Ma, and R. Wang: Scripta Mater., 2003, vol. 48, pp. 1319-23.

    CAS  Google Scholar 

  7. K. Amiya, T. Ohsuna, and A. Inoue: Mater. Trans., 2003, vol.44, pp. 2151-56.

    CAS  Google Scholar 

  8. J. Rao, K. Inoue, and Y. Kawamura: Adv. Eng. Mater., 2005, vol. 7, pp. 507-12.

    CAS  Google Scholar 

  9. M. Yamasaki, T.Anan, S. Yoshimoto, and Y. Kawamura: Scripta Mater., 2005, vol. 53, pp. 799-803.

    CAS  Google Scholar 

  10. Q. Li, Q. Wang, H. Zhou, X. Zeng, Y. Zhang, and W. Ding: Mater. Lett., 2005, vol. 59, pp. 2549-2554.

    CAS  Google Scholar 

  11. H. Watanabe, T. Mukai, M. Mabuchi, and K. Higashi: Acta Mater., 2001, vol. 49, pp. 2027-37.

    CAS  Google Scholar 

  12. H. Watanabe, T. Mukai, K. Ishikawa, T. Mohri, M. Mabuchi, and K. Higashi: Mater. Trans., 2001, vol. 42, pp. 157-62.

    CAS  Google Scholar 

  13. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi, and K. Higashi: Mater. Sci. Eng. A, 2001, vol. 307, pp. 119-28.

    Google Scholar 

  14. T.G. Nieh, A.J. Schwartz, and J. Wadsworth: Mater. Sci. Eng. A, 1996, vol. 208, pp. 30-36.

    Google Scholar 

  15. M. Mabuchi and K. Higashi: Philos. Mag. A, 1996, vol. 74, pp. 887-905.

    CAS  Google Scholar 

  16. J.A. del Valle, M.T. Pérez-Prado, and O.A. Ruano: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1427-38.

    Google Scholar 

  17. H. Watanabe, T. Mukai, and K. Higashi: Metall. Mater Trans. A, 2008, vol. 39, pp. 2351-62.

    CAS  Google Scholar 

  18. A. Ball and M. M. Hutchison: Metal Sci. J., 1969, vol. 3, pp. 1-7.

    Google Scholar 

  19. E. Arzt and D. S Wilkinson: Acta Metall., 1986, vol. 34, pp. 1893-96.

    CAS  Google Scholar 

  20. E. Arzt and J. Rösler: Acta Metall., 1988, vol. 36, pp. 1053-60.

    CAS  Google Scholar 

  21. S. Spigarelli, O.A.Ruano, M. El Mehtedi, and J.A. del Valle: Mater. Sci. Eng. A, 2013, vol. 570, pp. 135-48.

    CAS  Google Scholar 

  22. J.A. del Valle and O.A. Ruano: Mater. Sci. Eng. A, 2008, vol. 487, pp. 473-80.

    Google Scholar 

  23. J.A. del Valle and O. A. Ruano: Acta Mater., 2007, vol. 55, pp. 455-66.

    Google Scholar 

  24. J.A. del Valle, F. Peñalba, and O.A. Ruano: Mater. Sci. Eng. A, 2007, vol. 467, pp. 165-71.

    Google Scholar 

  25. Q.F. Wang, X.P. Xiao, J. Hu, W.W. Xu, X.Q. Zhao, and S.J. Zhao: in Proc. Sino-Swedish Structural Materials Symposium, 2007, pp. 167–72.

  26. H.K. Lin and J.C. Huang: Mater. Trans., 2002, vol. 43, pp. 2424-32.

    CAS  Google Scholar 

  27. M. Mabuchi, Y. Chino, and H. Iwasaki: Mater. Trans., 2003, vol. 44, pp. 490-95.

    CAS  Google Scholar 

  28. D.L. Yin, K.F. Zhang, G.F. Wang, and W.B. Han: Mater. Lett., 2005, vol. 59, pp. 1714-18.

    CAS  Google Scholar 

  29. H. Watanabe, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu, and K. Higashi: J. Jpn. Inst. Light Met., 1999, vol. 49, pp. 401-04.

    CAS  Google Scholar 

  30. H. Somekawa, H.Watanabe, T. Mukai, and K. Higashi: Scripta Mater., 2003, vol. 48, pp. 1249-54.

    CAS  Google Scholar 

  31. H. Somekawa, H. Watanabe, and K. Higashi: Mater. Trans., 2003, vol. 44, pp. 496-503.

    CAS  Google Scholar 

  32. H. Takuda, T. Morishita, T. Kinoshita, and N. Shirakawa: J. Mater. Process. Technnol., 2005, vol. 164–165, pp. 1258-62.

    Google Scholar 

  33. W.J. Kim, S.W. Chung, C.S. Chung, and D. Kum: Acta Mater., 2001, vol. 49, pp. 3337-45.

    CAS  Google Scholar 

  34. F.K. Abu-Farha and M.K. Khraisheh: Adv. Eng. Mater., 2007. vol. 9, pp. 777-83.

    CAS  Google Scholar 

  35. W.J. Kim, J.D. Park, and U.S. Yoon: J. Alloys Compd., 2008, vol. 464, pp. 197-204.

    CAS  Google Scholar 

  36. M. Liu, G. Yuan, Q. Wang, Y. Wei, W. Ding, and Y. Zhu: Mater. Trans., 2002, vol. 43, pp. 1-4.

    Google Scholar 

  37. H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi: Int. J. Plasticity, 2001, vol. 17, pp. 387-97.

    CAS  Google Scholar 

  38. X. Wu and Y. Liu: Scripta Mater., 2002, vol. 46, pp. 269-74.

    CAS  Google Scholar 

  39. N. Dua, A.F. Bower, P.E. Krajewski, and E. M. Taleff: Mater Sci. Eng. A, 2008, vol. 494, pp. 86-91.

    Google Scholar 

  40. A.Yawny and G. Eggeler: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 905-909.

    Google Scholar 

  41. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly, R. B. Nicholson, eds., Elsevier, Amsterdam, 1971.

  42. R. S. W. Shewfelt and L. M. Brown: Phil. Mag., 1977, vol. 35, pp. 945-62.

    CAS  Google Scholar 

  43. J. Rösler and E. Arzt: Acta Metall., 1988, vol. 36, pp. 1043-51.

    Google Scholar 

  44. A.K. Ghosh and R. Raj: Acta Metall., 1981, vol. 29, pp. 607-16.

    CAS  Google Scholar 

  45. J.A. del Valle and O. A. Ruano: Mater. Lett., 2008, vol. 62, pp. 3391-94.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CICYT, Spain, under Programs MAT2012-38962 and MAT2015-68919 (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar A. Ruano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 19, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Valle, J.A., Ruano, O.A. Critical Analysis of Threshold Stresses in the Creep Mechanisms of a Powder Metallurgy Magnesium Alloy AZ31. Metall Mater Trans A 51, 2344–2358 (2020). https://doi.org/10.1007/s11661-020-05658-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05658-8

Navigation