Skip to main content
Log in

Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Special attention has been paid to the organic afterglow materials (OAM) for their fascinating properties. However, poor stability at air and complicated structure design hinder the development of OAM. Herein, sol-gel, a facile and simple technique, is employed to synthesize a series of organic/inorganic hybrid nanocomposites (N1/SiO2, N2/SiO2, and N3/SiO2) by covalently linking three common aryl imides with crosslinked silica skeleton. These nanomaterials show excitation wavelength-dependent and colorful (yellow, red and green) afterglow of organic imides with long lifetime up to 1.1 s at air. Interestingly, the ultralong phosphorescence is ultrastable under various conditions: water, high temperature, UV irradiation and in vivo, due to the protection of inorganic silica. In particularly, heating to 500 °C does not quench the afterglow of organic luminophore in nanocomposites, but forms new ultralong phosphorescence originated from space-conjugation of silica and carbonyl. The afterglow nanomaterials display huge advantages in the applications of advanced anti-counterfeiting and bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, S. M.; Wu, D. B.; Gong, W. J.; Huang, Q. Q.; Zhen, H. Y.; Ling, Q. D.; Lin, Z. H. Highly efficient room-temperature phosphorescence and afterglow luminescence from common organic fluorophores in 2D hybrid perovskites. Chem. Sci.. 2018, 9, 8975–8981.

    Article  CAS  Google Scholar 

  2. Kenry; Chen, C. J.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun.. 2019, 10, 2111.

  3. Xu, S.; Chen, R. F.; Zheng, C.; Huang, W. Excited state modulation for organic afterglow: Materials and applications. Adv. Mater.. 2016, 28, 9920–9940.

    Article  CAS  Google Scholar 

  4. Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol.. 2017, 35, 1102–1110.

    Article  CAS  Google Scholar 

  5. Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc.. 2011, 133, 11810–11815.

    Article  CAS  Google Scholar 

  6. Lehner, P.; Staudinger, C.; Borisov, S. M.; Klimant, I. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat. Commun.. 2014, 5, 4460.

  7. Mathew, A. S.; DeRosa, C. A.; Demas, J. N.; Fraser, C. L. Difluoroboron ß-diketonate materials with long-lived phosphorescence enable lifetime based oxygen imaging with a portable cost effective camera. Anal. Methods2016, 8, 3109–3114.

    Article  CAS  Google Scholar 

  8. Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C. Afterglow organic light-emitting diode. Adv. Mater.. 2016, 28, 655–660.

    Article  CAS  Google Scholar 

  9. Huang, Q. Q.; Mei, X. F.; Xie, Z. L.; Wu, D. B.; Yang, S. M.; Gong, W. J.; Chi, Z. G.; Lin, Z. H.; Ling, Q. D. Photo-induced both phosphorescence and mechanoluminescence switch from a simple purely organic molecule. J. Mater. Chem. C2019, 7, 2530–2534.

    Article  CAS  Google Scholar 

  10. Su, Y.; Phua, S. Z. F.; Li, Y. B.; Zhou, X. J.; Jana, D.; Liu, G. F.; Lim, W. Q.; Ong, W. K.; Yang, C. L.; Zhao, Y. L. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv.. 2018, 4, eaas9732.

  11. Yang, S. M.; Zhou, B.; Huang, Q. Q.; Wang, S. Q.; Zhen, H. Y.; Yan, D. P.; Lin, Z. H.; Ling, Q. D. Highly efficient organic afterglow from a 2D layered lead-free metal halide in both crystals and thin films under an air atmosphere. ACS Appl. Mater. Interfaces2020, 12, 1419–1426.

    Article  CAS  Google Scholar 

  12. Li, H.; Ye, S.; Guo, J. Q.; Kong, J. T.; Song, J.; Kang, Z. H.; Qu, J. L. The design of room-temperature-phosphorescent carbon dots and their application as a security ink. J. Mater. Chem. C2019, 7, 10605–10612.

    Article  CAS  Google Scholar 

  13. Fateminia, S. M. A.; Mao, Z.; Xu, S. D.; Yang, Z. Y.; Chi, Z. G.; Liu, B. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem., Int. Ed.. 2017, 56, 12160–12164.

    Article  CAS  Google Scholar 

  14. Shi, H. F.; Song, L. L.; Ma, H. L.; Sun, C.; Huang, K. W.; Lv, A. Q.; Ye, W. P.; Wang, H.; Cai, S. Z.; Yao, W. et al. Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect. J. Phys. Chem. Lett.. 2019, 10, 595–600.

    Article  Google Scholar 

  15. Gong, Y. Y.; Chen, G.; Peng, Q.; Yuan, W. Z.; Xie, Y. J.; Li, S. H.; Zhang, Y. M.; Tang, B. Z. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater.. 2015, 27, 6195–6201.

    Article  CAS  Google Scholar 

  16. Gao, R.; Yan, D. P. Layered host–guest long-afterglow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci.. 2017, 8, 590–599.

    Article  CAS  Google Scholar 

  17. Hirata, S.; Totani, K.; Zhang, J. X.; Yamashita, T.; Kaji, H.; Marder, S. R.; Watanabe, T.; Adachi, C. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater.. 2013, 23, 3386–3397.

    Article  CAS  Google Scholar 

  18. Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature2017, 550, 384–387.

    Article  CAS  Google Scholar 

  19. Ogoshi, T.; Tsuchida, H.; Kakuta, T.; Yamagishi, T. A.; Taema, A.; Ono, T.; Sugimoto, M.; Mizuno, M. Ultralong room-temperature phosphorescence from amorphous polymer poly (styrene sulfonic acid) in air in the dry solid state. Adv. Funct. Mater.. 2018, 28, 1707369.

  20. Yuan, J.; Wang, S.; Ji, Y.; Chen, R. F.; Zhu, Q.; Wang, Y. R.; Zheng, C.; Tao, Y.; Fan, Q.; Huang, W. Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering. Mater. Horiz.. 2019, 6, 1259–1264.

    Article  CAS  Google Scholar 

  21. Liu, J. B.; Zhuang, Y. X.; Wang, L.; Zhou, T. L.; Hirosaki, N.; Xie, R. J. Achieving multicolor long-lived luminescence in dye-encapsulated metal-organic frameworks and its application to anticounterfeiting stamps. ACS Appl. Mater. Interfaces2018, 10, 1802–1809.

    Article  CAS  Google Scholar 

  22. Yang, X.; Yan, D. Long-afterglow metal–organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci.. 2016, 7, 4519–4526.

    Article  CAS  Google Scholar 

  23. Li, Q. J.; Zhou, M.; Yang, M. Y.; Yang, Q. F.; Zhang, Z. X.; Shi, J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun.. 2018, 9, 734.

  24. Jiang, Y. Y.; Huang, J. G.; Zhen, X.; Zeng, Z. L.; Li, J. C.; Xie, C.; Miao, Q. Q.; Chen, J.; Chen, P.; Pu, K. Y. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun.. 2019, 10, 2064.

  25. Tian, S.; Ma, H. L.; Wang, X.; Lv, A. Q.; Shi, H. F.; Geng, Y.; Li, J.; Liang, F. S.; Su, Z. M.; An, Z. F. et al. Utilizing d–pp bonds for ultralong organic phosphorescence. Angew. Chem., Int. Ed.. 2019, 58, 6645–6649.

    Article  CAS  Google Scholar 

  26. Tian, D.; Zhu, Z. C.; Xu, L.; Cong, H. J.; Zhu, J. T. Intramolecular electronic coupling for persistent room-temperature luminescence for smartphone based time-gated fingerprints detection. Mater. Horiz.. 2019, 6, 1215–1221.

    Article  CAS  Google Scholar 

  27. Yuan, J.; Chen, R. F.; Tang, X. X.; Tao, Y.; Xu, S.; Jin, L.; Chen, C. L.; Zhou, X. H.; Zheng, C.; Huang, W. Direct population of triplet excited states through singlet–triplet transition for visible-light excitable organic afterglow. Chem. Sci.. 2019, 10, 5031–5038.

    Article  CAS  Google Scholar 

  28. Wang, C. R.; Gong, Y. Y.; Yuan, W. Z.; Zhang, Y. M. Crystallizationinduced phosphorescence of pure organic luminogens. Chin. Chem. Lett.. 2016, 27, 1184–1192.

    Article  CAS  Google Scholar 

  29. Chen, H.; Yao, X. Y.; Ma, X.; Tian, H. Amorphous, efficient, roomtemperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater.. 2016, 4, 1397–1401.

    Article  CAS  Google Scholar 

  30. Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem., Int. Ed.. 2018, 57, 10854–10858.

    Article  CAS  Google Scholar 

  31. Lin, Z. H.; Zheng, X.; Chen, H.; Ling, Q. D.; Chen, Q. S.; Zhao, C. X. A new kind of porous hybridized nanocomposite: ω-sulfonicperfluoroalkylated polyalkoxysilane/silica. J. Porous Mater.. 2013, 20, 851–858.

    Article  CAS  Google Scholar 

  32. Lin, Z. H.; Huang, L. M.; Ling, Q. D.; Chen, H.; Zhao C. X. ω-Sulfonic-perfluoroalkylated poly (styrene–maleic anhydride)/silica hybridized nanocomposite as a new kind of solid acid catalyst. J. Mol. Catal. A Chem.. 2012, 365, 73–79.

    Article  CAS  Google Scholar 

  33. Aparicio, M.; Jitianu, A.; Klein, L. C. Sol-Gel Processing for Conventional and Alternative Energy; Springer: New York, 2012.

    Book  Google Scholar 

  34. Song, M. R.; Song, J. L.; Ning, A. M.; Cui, B. A.; Cui, S. M.; Zhou, Y. B.; An, W. K.; Dong, X. S.; Zhang, G. G. Feasibility study of silica sol as the carrier of a hydrophobic drug in aqueous solution using enrofloxacin as the model. Mater. Sci. Eng. C2010, 30, 58–61.

    Article  Google Scholar 

  35. Kalapathy, U.; Proctor, A.; Shultz, J. A simple method for production of pure silica from rice hull ash. Bioresour. Technol.. 2000, 73, 257–262.

    Article  CAS  Google Scholar 

  36. Feng, Y. B.; Bai, T.; Yan, H. X.; Ding, F.; Bai, L. H.; Feng, W. X. High fluorescence quantum yield based on the through-space conjugation of hyperbranched polysiloxane. Macromolecules2019, 52, 3075–3082.

    Article  CAS  Google Scholar 

  37. Ni, X.; Zhang, X. Y.; Duan, X. C.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted imageguided cancer surgery. Nano Lett.. 2019, 19, 318–330.

    Article  CAS  Google Scholar 

  38. Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater.. 2019, 31, 1904914.

  39. Chen, C.; Ou, H. L.; Liu, R. H.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater.2020, 32, 1806331.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21374017, 21574021 and 51873092), and the Natural Science Foundation of Fujian Province (No. 2017J01684).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Ding or Zhenghuan Lin.

Electronic Supplementary Material

12274_2020_2740_MOESM1_ESM.pdf

Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Gao, H., Yang, S. et al. Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application. Nano Res. 13, 1035–1043 (2020). https://doi.org/10.1007/s12274-020-2740-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2740-x

Keywords

Navigation