Skip to main content
Log in

Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The performance of water purification by adsorption method has been limited owing to the fact that most of current available adsorbents fail to achieve satisfactory removal performance for organic micropollutants. Herein, we report the design and synthesis of novel porous polymeric adsorbent built from β-cyclodextrin (β-CD), in which β-CD molecules are arranged in an ordered bis (β-CD) tubular assemblies. The induction of bis (β-CD) units renders them high adsorption affinity toward bisphenols (bisphenol A and its analogues bisphenol B, bisphenol F and bisphenol S), the typical endocrine disruptors, via the formation of stable host-guest inclusion complexes in aquatic systems. In combination with their high porosity (Brunauer-Emmett-Teller (BET) surface area of 150 m2·g−1), abundant β-CD content and fast sorption kinetics, the obtained adsorbent outperforms commercial water purifier in elimination of bisphenol micropollutants from potable water. Our work may open a new avenue for designing highly efficient adsorbents for removal of organic micropollutants from aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere1998, 36, 2149–2173.

    CAS  Google Scholar 

  2. Fu, P. Q.; Kawamura, K. Ubiquity of bisphenol A in the atmosphere. Environ. Pollut.2010, 158, 3138–3143.

    CAS  Google Scholar 

  3. Ben-Jonathan, N.; Hugo, E. R.; Brandebourg, T. D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol.2009, 304, 49–54.

    CAS  Google Scholar 

  4. Boucher, J. G.; Boudreau, A.; Atlas, E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr. Diabetes2014, 4, e102.

    CAS  Google Scholar 

  5. Héliès-Toussaint, C.; Peyre, L.; Costanzo, C.; Chagnon, M. C.; Rahmani, R. Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study. Toxicol. Appl. Pharmacol.2014, 280, 224–235.

    Google Scholar 

  6. Arampatzidou, A.; Voutsa, D.; Deliyanni, E. Removal of bisphenol A by Fe-impregnated activated carbons. Environ. Sci. Pollut. Res.2018, 25, 25869–25879.

    CAS  Google Scholar 

  7. Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci.2005, 30, 38–70.

    CAS  Google Scholar 

  8. Zhang, H.; Wang, H.; Wang, F. F.; Wei, J. F.; Zhou, X. Y.; Ji, Y. L. Fabrication of hydrophilic and hydrophobic site on polypropylene nonwoven for removal of bisphenol A from water: Explorations on adsorption behaviors, mechanisms and configurational influence. J. Polym. Res.2017, 24, 171.

    Google Scholar 

  9. Ali, I.; Gupta, V. K. Advances in water treatment by adsorption technology. Nat. Protoc.2006, 1, 2661–2667.

    CAS  Google Scholar 

  10. Bhatnagar, A.; Anastopoulos, I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere2017, 168, 885–902.

    CAS  Google Scholar 

  11. Katsigiannis, A.; Noutsopoulos, C.; Mantziaras, J.; Gioldasi, M. Removal of emerging pollutants through granular activated carbon. Chem. Eng. J.2015, 280, 49–57.

    CAS  Google Scholar 

  12. Paredes, L.; Alfonsin, C.; Allegue, T.; Omil, F.; Carballa, M. Integrating granular activated carbon in the post-treatment of membrane and settler effluents to improve organic micropollutants removal. Chem. Eng. J.2018, 345, 79–86.

    CAS  Google Scholar 

  13. Chiang, P. C.; Chang, E. E.; Wu, J. S. Comparison of chemical and thermal regeneration of aromatic compounds on exhausted activated carbon. Water Sci. Technol.1997, 35, 279–285.

    CAS  Google Scholar 

  14. San Miguel, G.; Lambert, S. D.; Graham, N. J. D. The regeneration of field-spent granular-activated carbons. Water Res.2001, 35, 2740–2748

    CAS  Google Scholar 

  15. Bautista-Toledo, I.; Ferro-Garcia, M. A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernandez, F. J. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol.2005, 39, 6246–6250.

    CAS  Google Scholar 

  16. Wang, S. B.; Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J.2010, 156, 11–24.

    CAS  Google Scholar 

  17. Shen, Y. H. Phenol sorption by organoclays having different charge characteristics. Colloids Surf. A: Physicochem. Eng. Aspects2004, 232, 143–149.

    CAS  Google Scholar 

  18. Li, J.; Zhan, Y. H.; Lin, J. W.; Jiang, A.; Xi, W. Removal of bisphenol A from aqueous solution using cetylpyridinium bromide (CPB)-modified natural zeolites as adsorbents. Environ. Earth Sci.2014, 72, 3969–3980.

    CAS  Google Scholar 

  19. Xu, J.; Wang, L.; Zhu, Y. F. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir2012, 28, 8418–8425.

    CAS  Google Scholar 

  20. Fang, Z.; Hu, Y. Y.; Wu, X. S.; Qin, Y. Z.; Cheng, J. H.; Chen, Y. C.; Tan, P.; Li, H. Q. A novel magnesium ascorbyl phosphate graphenebased monolith and its superior adsorption capability for bisphenol A. Chem. Eng. J.2018, 334, 948–956.

    CAS  Google Scholar 

  21. Fang, Z.; Hu, Y. Y.; Zhang, W. W.; Ruan, X. Shell-free three-dimensional graphene-based monoliths for the aqueous adsorption of organic pollutants. Chem. Eng. J.2017, 316, 24–32.

    CAS  Google Scholar 

  22. Wang, P.; Xiao, P. Y.; Zhong, S. X.; Chen, J. R.; Lin, H. J.; Wu, X. L. Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. J. Mater. Chem. A2016, 4, 15450–15456.

    CAS  Google Scholar 

  23. Kuo, C. Y. Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A. Desalination2009, 249, 976–982.

    CAS  Google Scholar 

  24. Jun, L. Y.; Mubarak, N. M.; Yee, M. J.; Yon, L. S.; Bing, C. H.; Khalid, M.; Abdullah, E. C. An overview of functionalised carbon nanomaterial for organic pollutant removal. J. Ind. Eng. Chem.2018, 67, 175–186.

    CAS  Google Scholar 

  25. Xiao, G. Q.; Fu, L. C.; Li, A. M. Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-cross-linked polymeric adsorbent: Effect of the cross-linked bridge. Chem. Eng. J.2012, 191, 171–176.

    CAS  Google Scholar 

  26. Park, E. Y.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive removal of bisphenol A from water with a metal-organic framework, a porous chromium-benzenedicarboxylate. J. Nanosci. Nanotechnol.2013, 13, 2789–2794.

    CAS  Google Scholar 

  27. Zhou, M. M.; Wu, Y. N.; Qiao, J. L.; Zhang, J.; McDonald, A.; Li, G. T.; Li, F. T. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al). J. Colloid Interface Sci.2013, 405, 157–163.

    CAS  Google Scholar 

  28. Liu, Y.; Zhong, G. X.; Liu, Z. C.; Meng, M. J.; Liu, F. F.; Ni, L. Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol A. Chem. Eng. J.2016, 296, 437–446.

    CAS  Google Scholar 

  29. Asada, T.; Oikawa, K.; Kawata, K.; Ishihara, S.; Iyobe, T.; Yamada, A. Study of removal effect of bisphenol A and β-estradiol by porous carbon. J. Health Sci.2004, 50, 588–593.

    CAS  Google Scholar 

  30. Krause, R. W.; Mamba, B. B.; Bambo, F. M.; Malefetse, T. J. Cyclodextrin polymers: Synthesis and application in water treatment. In Cyclodextrins: Chemistry and Physics; Hu, J., Ed.; Transworld Research Network: Kerala, India, 2010; pp 185–210.

    Google Scholar 

  31. Morin-Crini, N.; Crini, G. Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog. Polym. Sci.2013, 38, 344–368.

    CAS  Google Scholar 

  32. Sikder, M. T.; Rahman, M. M.; Jakariya, M.; Hosokawa, T.; Kurasaki, M.; Saito, T. Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chem. Eng. J.2019, 355, 920–941.

    CAS  Google Scholar 

  33. Gidwani, B.; Vyas, A. Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf. B: Biointerfaces2014, 114, 130–137.

    CAS  Google Scholar 

  34. Yang, Z. X.; Chen, Y.; Liu, Y. Inclusion complexes of bisphenol A with cyclomaltoheptaose (β-cyclodextrin): Solubilization and structure. Carbohydr. Res.2008, 343, 2439–2442.

    CAS  Google Scholar 

  35. Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L. D.; Fenyvesi, E.; Crini, G. Water-insoluble β-cyclodextrin.epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci2018, 78, 1–23.

    CAS  Google Scholar 

  36. Liu, H. H.; Cai, X. Y.; Wang, Y.; Chen, J. W. Adsorption mechanismbased screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res.2011, 45, 3499–3511.

    CAS  Google Scholar 

  37. Wang, Z. H.; Zhang, P. B.; Hu, F.; Zhao, Y. F.; Zhu, L. P. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydr. Polym.2017, 224–231.

  38. Morales-Sanfrutos, J.; Lopez-Jaramillo, F. J.; Elremaily, M. A. A.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. Divinyl sulfone crosslinked cyclodextrin-based polymeric materials: Synthesis and applications as sorbents and encapsulating agents. Molecules2015, 20, 3565–3581.

    Google Scholar 

  39. Kono, H.; Nakamura, T. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. React. Funct. Polym.2013, 73, 1096–1102.

    CAS  Google Scholar 

  40. Tang, P. X.; Sun, Q. M.; Suo, Z. L.; Zhao, L. D.; Yang, H. Q.; Xiong, X. N.; Pu, H. Y.; Gan, N.; Li, H. Rapid and efficient removal of estrogenic pollutants from water by using beta- and gammacyclodextrin polymers. Chem. Eng. J.2018, 344, 514–523.

    CAS  Google Scholar 

  41. Alsbaiee, A.; Smith, B. J.; Xiao, L. L.; Ling, Y. H.; Helbling, D. E.; Dichtel, W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature2016, 529, 190–194.

    CAS  Google Scholar 

  42. De Souza, I. F. T.; Petri, D. F. S. β-Cyclodextrin hydroxypropyl methylcellulose hydrogels for bisphenol A adsorption. J. Mol. Liq.2018, 266, 640–648

    Google Scholar 

  43. Liu, J.; Yang, Y. M.; Bai, J. W.; Wen, H.; Chen, F. J.; Wang, B. D. Hyper-cross-linked porous MoS2-cyclodextrin-polymer frameworks: Durable removal of aromatic phenolic micropollutant from water. Anal. Chem.2018, 90, 3621–3627.

    CAS  Google Scholar 

  44. Li, X. M.; Zhou, M. J.; Jia, J. X.; Ma, J. T.; Jia, Q. Design of a hyper-crosslinked β-cyclodextrin porous polymer for highly efficient removal toward bisphenol A from water. Sep. Purif. Technol.2018, 195, 130–137.

    CAS  Google Scholar 

  45. Kumprecht, L.; Buděšínský, M.; Vondrášek, J.; Vymětal, J.; Černý, J.; Cisařová, I.; Brynda, J.; Herzig, V.; Koutnik, P.; Závada, J. et al. Rigid duplex α-cyclodextrin reversibly connected with disulfide bonds. Synthesis and inclusion complexes. J. Org. Chem.2009, 74, 1082–1092.

    CAS  Google Scholar 

  46. Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res.2006, 39, 681–691.

    CAS  Google Scholar 

  47. Breslow, R.; Greenspoon, N.; Guo, T.; Zarzycki, R. Very strong binding of appropriate substrates by cyclodextrin dimers. J. Am. Chem. Soc.1989, 111, 8296–8297.

    CAS  Google Scholar 

  48. Harada, A.; Furue, M.; Nozakura, S. I. Cooperative binding by cyclodextrin dimers. Polym. J.1980, 12, 29–33.

    CAS  Google Scholar 

  49. Liu, Y.; You, C. C.; Zhang, H. Y.; Kang, S. Z.; Zhu, C. F.; Wang, C. Bis(molecular tube)s: Supramolecular assembly of complexes of organoselenium-bridged β-cyclodextrins with platinum(IV). Nano Lett.2001, 1, 613–616

    CAS  Google Scholar 

  50. Liu, Y.; Yang, Z. X.; Chen, Y.; Song, Y.; Shao, N. Construction of a long cyclodextrin-based bis(molecular tube) from bis(polypseudorotaxane) and its capture of C60. ACS Nano2008, 2, 554–560.

    CAS  Google Scholar 

  51. Furukawa, Y.; Ishiwata, T.; Sugikawa, K.; Kokado, K.; Sada, K. Nano- and microsized cubic gel particles from cyclodextrin metalorganic frameworks. Angew. Chem., Int. Ed.2012, 51, 10566–10569.

    CAS  Google Scholar 

  52. Tao, Y. X.; Gu, X. G.; Deng, L. H.; Qin, Y.; Xue, H. G.; Kong, Y. Chiral recognition of d-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin. J. Phys. Chem. C2015, 119, 8183–8190.

    CAS  Google Scholar 

  53. Shih, Y. H.; Kuo, Y. C.; Lirio, S.; Wang, K. Y.; Lin, C. H.; Huang, H. Y. A simple approach to enhance the water stability of a metal-organic framework. Chem..Eur. J.2017, 23, 42–46.

    CAS  Google Scholar 

  54. Hartlieb, K. J.; Holcroft, J. M.; Moghadam, P. Z.; Vermeulen, N. A.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y.; Snurr, R. Q.; Stoddart, J. F. Cd-MOF: A versatile separation medium. J. Am. Chem. Soc.2016, 138, 2292–2301.

    CAS  Google Scholar 

  55. Wang, L.; Liang, X. Y.; Chang, Z. Y.; Ding, L. S.; Zhang, S.; Li, B. J. Effective formaldehyde capture by green cyclodextrin-based metalorganic framework. ACS Appl. Mater. Interfaces2018, 10, 42–46.

    CAS  Google Scholar 

  56. Sha, J. Q.; Zhong, X. H.; Wu, L. H.; Liu, G. D.; Sheng, N. Nontoxic and renewable metal-organic framework based on α-cyclodextrin with efficient drug delivery. RSC Advances2016, 6, 82977–82983.

    CAS  Google Scholar 

  57. Wu, Y. L.; Shi, R. F.; Wu, Y. L.; Holcroft, J. M.; Liu, Z. C.; Frasconi, M.; Wasielewski, M. R.; Li, H.; Stoddart, J. F. Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc.2015, 137, 4111–4118.

    CAS  Google Scholar 

  58. Holcroft, J. M.; Hartlieb, K. J.; Moghadam, P. Z.; Bell, J. G.; Barin, G.; Ferris, D. P.; Bloch, E. D.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y. et al. Carbohydrate-mediated purification of petrochemicals. J. Am. Chem. Soc.2015, 137, 5706–5719.

    CAS  Google Scholar 

  59. Singh, V.; Guo, T.; Xu, H. T.; Wu, L.; Gu, J. K.; Wu, C. B.; Gref, R.; Zhang, J. W. Moisture resistant and biofriendly Cd-MOF nanoparticles obtained via cholesterol shielding. Chem. Commun.2017, 53, 9246–9249.

    CAS  Google Scholar 

  60. Li, H. Q.; Hill, M. R.; Huang, R. H.; Doblin, C.; Lim, S.; Hill, A. J.; Babarao, R.; Falcaro, P. Facile stabilization of cyclodextrin metalorganic frameworks under aqueous conditions via the incorporation of C60 in their matrices. Chem. Commun.2016, 52, 5973–5976.

    CAS  Google Scholar 

  61. Yamasaki, H.; Makihata, Y.; Fukunaga, K. Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles. J. Chem. Technol. Biotechnol.2006, 81, 1271–1276.

    CAS  Google Scholar 

  62. Klemes, M. J.; Ling, Y. H.; Chiapasco, M.; Alsbaiee, A.; Helbling, D. E.; Dichtel, W. R. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. Chem. Sci.2018, 9, 8883–8889.

    CAS  Google Scholar 

  63. Garcia-Zubiri, I. X.; Gonzalez-Gaitano, G.; Isasi, J. R. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dualmode approach. J. Colloid Interface Sci.2009, s11–18.

  64. Huang, Y. Q.; Wong, C. K. C.; Zheng, J. S.; Bouwman, H.; Barra, R.; Wahlstrom, B.; Neretin, L.; Wong, M. H. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environ. Int.2012, 42, 91–99.

    CAS  Google Scholar 

  65. Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem.2007, 28, 1145–1152.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support received from the National Key Research and Development Program of China (No. 2016YFA0203200), the National Natural Science Foundation of China (Nos. 21721003 and 21874127), and K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Yan, Jin Wang or Lehui Lu.

Electronic Supplementary Material

12274_2020_2758_MOESM1_ESM.pdf

Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Ren, X., Yan, Z. et al. Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems. Nano Res. 13, 1933–1942 (2020). https://doi.org/10.1007/s12274-020-2758-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2758-0

Keywords

Navigation