Skip to main content

Advertisement

Log in

Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Gallic acid (GA) a naturally occurring phenolic compound, known to possess antioxidant/anti-inflammatory activities. The aim of the present work was to investigate the beneficial effects of GA against COPD-linked lung inflammation/emphysema by utilizing elastase (ET) and cigarette smoke (CS)-induced mice model.

Materials

Male BALB/c mice were treated with ET (1U/mouse) or exposed to CS (9 cigarettes/day for 4 days). GA administration was started 7 days (daily) prior to ET/CS exposure. Broncho-alveolar lavage was analyzed for inflammatory cells and pro-inflammatory cytokines. Lung homogenate was assessed for MPO activity/GSH/MDA/protein carbonyls. Further, Lung tissue was subjected to semi-quantitative RT-PCR, immunoblotting, and histological analysis.

Results

GA suppressed the ET-induced neutrophil infiltration, elevated MPO activity and production of pro-inflammatory cytokines (IL-6/TNF-α/IL-1β) at 24 h. Reduced inflammation was accompanied with normalization of redox balance as reflected by ROS/GSH/MDA/protein carbonyl levels. Further, GA suppressed phosphorylation of p65NF-κB and IκBα along with down-regulation of IL-1β/TNF-α/KC/MIP-2/GCSF genes. Furthermore, GA offered protection against ET-induced airspace enlargement and ameliorated MMP-2/MMP-9. Finally, GA suppressed the CS-induced influx of neutrophils and macrophages and blunted gene expression of TNF-α/MIP-2/KC.

Conclusion

Overall, our data show that GA effectively modulates pulmonary inflammation and emphysema associated with COPD pathogenesis in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease Report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–82. https://doi.org/10.1164/rccm.201701-0218PP.

    Article  CAS  PubMed  Google Scholar 

  2. Quaderi SA, Hurst JR. The unmet global burden of COPD. Global Health Epidemiol Genomics. 2018;3:e4–e4.

    CAS  Google Scholar 

  3. Babu KS, Morjaria JB. Emerging therapeutic strategies in COPD. Drug Discov Today. 2015;20:371–9.

    CAS  PubMed  Google Scholar 

  4. Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144:266–73.

    CAS  PubMed  Google Scholar 

  5. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219–42.

    CAS  PubMed  Google Scholar 

  6. Rhee J-W, Lee K-W, Kim D-B, Lee Y-H, Jeon O-H, Kwon H-J, et al. NF-B-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. BMB Rep. 2007;40:88–94.

    CAS  Google Scholar 

  7. Lan Y-Q, Zhang C, Xiao J-H, Zhuo Y-H, Guo H, Peng W, et al. Suppression of IkB increases the expression of matrix metalloproteinase-2 in human ciliary muscle cells. Mol Vis. 2009;15:1977.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vernooy JHJ, Lindeman JHN, Jacobs JA, Hanemaaijer R, Wouters EFM. Increased activity of matrix metalloproteinase-8 and matrix metalloproteinase-9 in induced sputum from patients with COPD. Chest. 2004;126:1802–10.

    CAS  PubMed  Google Scholar 

  9. Baraldo S, Bazzan E, Zanin ME, Turato G, Garbisa S, Maestrelli P, et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest. 2007;132:1733–40.

    CAS  PubMed  Google Scholar 

  10. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47.

    CAS  PubMed  Google Scholar 

  11. Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540–57.

    CAS  Google Scholar 

  12. Nikbakht J, Hemmati AA, Arzi A, Mansouri MT, Rezaie A, Ghafourian M. Protective effect of gallic acid against bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep. 2015;67:1061–7.

    CAS  PubMed  Google Scholar 

  13. Kalantar M, Khodayar MJ, Kalantari H, Khorsandi L, Hemmati AA. Therapeutic Effect of Gallic Acid Against Paraquat-Induced Lung Injury in Rat. Jundishapur J Nat Pharm Prod. 2018;13:e12450.

    Google Scholar 

  14. Wang X, Zhao H, Ma C, Lv L, Feng J, Han S. Gallic acid attenuates allergic airway inflammation via suppressed interleukin-33 and group 2 innate lymphoid cells in ovalbumin-induced asthma in mice. Int Forum Allergy Rhinol. 2018;8:1284–90.

    PubMed  Google Scholar 

  15. Vlahos R, Bozinovski S, Jones JE, Powell J, Gras J, Lilja A, et al. Differential protease, innate immunity, and NF-κB induction profiles during lung inflammation induced by subchronic cigarette smoke exposure in mice. Am J Physiol Lung Cell Mol Physiol. 2006;290:L931–L945945.

    CAS  PubMed  Google Scholar 

  16. Sahu B, Sandhir R, Naura AS. Two hit induced acute lung injury impairs cognitive function in mice: a potential model to study cross talk between lung and brain. Brain Behav Immun. 2018;73:633–42.

    CAS  PubMed  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  18. Suzuki K, Ota H, Sasagawa S, Sakatani T, Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal Biochem. 1983;132:345–52.

    CAS  PubMed  Google Scholar 

  19. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27(5–6):612–6.

    CAS  PubMed  Google Scholar 

  20. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione Stransferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67–78.

    CAS  PubMed  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    CAS  Google Scholar 

  22. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;1990(186):464–78.

    Google Scholar 

  23. Sethi GS, Naura AS. Progressive increase in allergen concentration abrogates immune tolerance in ovalbumin-induced murine model of chronic asthma. Int Immunopharmacol. 2018;60:121–31.

    CAS  PubMed  Google Scholar 

  24. Dharwal V, Naura AS. PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochem Pharmacol. 2018;150:24–34.

    CAS  PubMed  Google Scholar 

  25. Dharwal V, Sandhir R, Naura AS. PARP-1 inhibition provides protection against elastase-induced emphysema by mitigating the expression of matrix metalloproteinases. Mol Cell Biochem. 2019;457:41–9.

    CAS  PubMed  Google Scholar 

  26. Sharma S, Sethi GS, Naura AS. Curcumin ameliorates ovalbumin-induced atopic dermatitis and blocks the progression of atopic march in mice. Inflammation. 2019. https://doi.org/10.1007/s10753-019-01126-7.

    Article  PubMed  Google Scholar 

  27. Zhu A, Ge D, Zhang J, Teng Y, Yuan C, Huang M, et al. Sputum myeloperoxidase in chronic obstructive pulmonary disease. Eur J Med Res. 2014;19:12.

    PubMed  PubMed Central  Google Scholar 

  28. Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl. 2001;34:50s–9s.

    CAS  PubMed  Google Scholar 

  29. Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41:631–8.

    CAS  PubMed  Google Scholar 

  30. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Odajima N, Moriyama C, et al. Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol. 2009;296:L614–L623623.

    CAS  PubMed  Google Scholar 

  31. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22:672–88.

    CAS  PubMed  Google Scholar 

  32. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138:16–27.

    CAS  PubMed  Google Scholar 

  33. Noguera A, Batle S, Miralles C, Iglesias J, Busquets X, MacNee W, et al. Enhanced neutrophil response in chronic obstructive pulmonary disease. Thorax. 2001;56:432–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Donnell RA, Peebles C, Ward JA, Daraker A, Angco G, Broberg P, et al. Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax. 2004;59:837–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferruzzi MG, Lobo JK, Janle EM, Cooper B, Simon JE, Wu QL, et al. (2009) Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats implications for treatment in Alzheimer’s disease. J Alzheimers Dis. 2009;18(1):113–24. https://doi.org/10.3233/JAD-2009-1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chow HHS, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer. 2003;9:3312–9.

    CAS  Google Scholar 

  37. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92:3007–17.

    CAS  PubMed  Google Scholar 

  38. Zhang R, Brennan ML, Shen Z, MacPherson JC, Schmitt D, Molenda CE, et al. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem. 2002;277:46116–22.

    CAS  PubMed  Google Scholar 

  39. Torres-Ramos YD, Garca-Guillen ML, Olivares-Corichi IM, Hicks JJ. Correlation of Plasma Protein Carbonyls and C-Reactive Protein with GOLD Stage Progression in COPD Patients. Open Respir Med J. 2009;3:61–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmad A, Shameem M, Husain Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2013;17:1104–9.

    CAS  PubMed  Google Scholar 

  41. Reckziegel P, Dias VT, Benvegna DM, Boufleur N, Barcelos RCS, Segat HJ, et al. Antioxidant protection of gallic acid against toxicity induced by Pb in blood, liver and kidney of rats. Toxicol Rep. 2016;3:351–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim Y-J. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharmaceut Bull. 2007;30:1052–5.

    CAS  Google Scholar 

  43. Chen C-Y, Chen K-C, Yang T-Y, Liu H-C, Hsu S-L. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts. eCAM. 2013;2013:613950–613950.

    PubMed  Google Scholar 

  44. Chuang C-Y, Liu H-C, Wu L-C, Chen C-Y, Chang JT, Hsu S-L. Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway. J Agric Food Chem. 2010;58:2943–51.

    CAS  PubMed  Google Scholar 

  45. Inoue M, Suzuki R, Sakaguchi N, Li Z, Takeda T, Ogihara Y, et al. Selective induction of cell death in cancer cells by gallic acid. Biol Pharmaceut Bull. 1995;18:1526–30.

    CAS  Google Scholar 

  46. Madlener S, Illmer C, Horvath Z, Saiko P, Losert A, Herbacek I, et al. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett. 2007;245:156–62.

    CAS  PubMed  Google Scholar 

  47. Schuliga M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules. 2015;5:1266–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu L, Gu P, Shen H. Gallic acid improved inflammation via NF-kappaB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol. 2019;67:129–37.

    CAS  PubMed  Google Scholar 

  49. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008;12:361–7.

    CAS  PubMed  Google Scholar 

  50. Limjunyawong N, Craig JM, Lagasse HA, Scott AL, Mitzner W. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans. Am J Physiol Lung Cell Mol Physiol. 2015;309:L662–L67676.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen YJ, Chang LS. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol Nutr Food Res. 2012;56:1398–412.

    CAS  PubMed  Google Scholar 

  52. Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008;295:L1–L15.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nature Chem. 2016;8:531.

    CAS  Google Scholar 

  54. Rahman I. Antioxidant therapies in COPD. Int J Chron Obstr Pulm Dis. 2006;1:15–29.

    CAS  Google Scholar 

  55. Kaluza J, Larsson SC, Orsini N, Linden A, Wolk A. Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men. Thorax. 2017;72:500–9.

    PubMed  Google Scholar 

  56. Baldrick FR, Elborn JS, Woodside JV, Treacy K, Bradley JM, Patterson CC, et al. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial. Eur Respir J. 2012;39:1377–84.

    CAS  PubMed  Google Scholar 

  57. Karimi-Khouzani O, Heidarian E, Amini SA. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats. Pharmacol Rep. 2017;69:830–5.

    CAS  PubMed  Google Scholar 

  58. Panza VS, Wazlawik E, Ricardo Schutz G, Comin L, Hecht KC, da Silva EL. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008;24:433–42.

    CAS  PubMed  Google Scholar 

  59. Chiu H-F, Lin T-Y, Shen Y-C, Venkatakrishnan K, Wang C-K. Improvement of green tea polyphenol with milk on skin with respect to antioxidation in healthy adults: a double-blind placebo-controlled randomized crossover clinical trial. Food Funct. 2016;7:893–901.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The present work was supported by funds from Department of Biotechnology, Government of India (BT/PR17968/MED/122/33/2016 and BT/RLF/Re-entry/36/2012), DST-PURSE and UGC-SAP to ASN. We also acknowledge the Senior Research Fellowship to ES from ICMR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjit S. Naura.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, E., Dharwal, V. & Naura, A.S. Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice. Inflamm. Res. 69, 423–434 (2020). https://doi.org/10.1007/s00011-020-01333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01333-1

Keywords

Navigation