Skip to main content
Log in

Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Chickpea is one of the most consumed legumes worldwide. Among their benefits are the high protein concentration that reflects not only at the nutritional level but also on the supply of active peptides; besides, it presents different metabolites with pharmacological activities. Some biological activities identified in the different compounds of chickpea are antioxidant, antihypertensive, hypocholesterolemic, and anticancer. Although most reports are based on the effects of the proteins and their hydrolysates, alcoholic extracts have also been proven that contain phenolic compounds, saponins, phytates, among others; therefore, their consumption has been dubbed as an alternative for the prevention of chronic degenerative diseases. In the present review, we summarize the nutritional composition of the chickpea and describe the main biological activities reported for this legume, revealing some of its beneficial effects on health, of which there is still much to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. López-Martínez LX, Leyva-López N, Gutiérrez-Grijalva et al (2017) Effect of cooking and germination on bioactive compounds in pulses and their health benefits. J Funct Foods 38:624–634. https://doi.org/10.1016/j.jff.2017.03.002

    Article  CAS  Google Scholar 

  2. Luna-Vital D, González de Mejía E (2018) Peptides from legumes with antigastrointestinal cancer potential: current evidence for their molecular mechanisms. Curr Opin Food Sci 20:13–18. https://doi.org/10.1016/j.cofs.2018.02.012

    Article  Google Scholar 

  3. Pina-Pérez MC, Ferrús-Pérez MA (2018) Antimicrobial potential of legume extracts against foodborne pathogens: a review. Trends Food Sci Technol 72:114–124. https://doi.org/10.1016/j.tifs.2017.12.007

  4. Murphy KJ, Marques-Lopes I, Sánchez-Tainta A (2018) Cereals and legumes. In: Sánchez-Villegas A, Sánchez-Tainta A (eds) The prevention of cardiovascular disease through the Mediterranean diet. Academic Press, Oxford, pp 111–132. https://doi.org/10.1016/C2016-0-00845-8

    Chapter  Google Scholar 

  5. Kumar MR, Kumar MV (2017) Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT-Food Sci Technol 75:51–58. https://doi.org/10.1016/j.lwt.2016.08.036

  6. Kan L, Nie S, Hu J, Wang S, Bai Z, Wang J, Zhou Y, Jiang J, Zeng Q, Song K (2018) Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food Chem 260:317–326. https://doi.org/10.1016/j.foodchem.2018.03.148

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Ma HR, Gao YH, Zhang X, Habasi M, Hu R, Aisa HA (2014) Isoflavones extracted from chickpea (Cicer arietinum L.) sprouts induce mitochondria dependent apoptosis in human breast cancer cells. Phytother Res 29(2):210–219. https://doi.org/10.1002/ptr.5241

    Article  CAS  PubMed  Google Scholar 

  8. Wallace TC, Murray R, Zelman KM (2016) The nutritional value and health benefits of chickpeas and hummus. Nutrients 8:766–776. https://doi.org/10.3390/nu8120766w

    Article  PubMed Central  Google Scholar 

  9. Bulbula DD, Urga K (2018) Study on the effect of traditional processing methods on nutritional composition and antinutritional factors in chickpea (Cicer arietinum). Cogent Food Agric 4(1):1–12. https://doi.org/10.1080/23311932.2017.1422370

    Article  CAS  Google Scholar 

  10. Shukla R, Singh P, Prakash B, Dubey NK (2012) Antifungal, aflatoxin inhibition and antioxidant activity of Callistemon lanceolatus (Sm.) sweet essential oil and its major component 1,8-cineole against fungal isolates from chickpea seeds. Food Control 25:27–33. https://doi.org/10.1016/j.foodcont.2011.10.010

    Article  CAS  Google Scholar 

  11. Rachwat RD, Nebesny E, Budryn G (2015) Chickpeas composition, nutritional value, health benefits, application to bread and snacks: a review. Crit Rev Food Sci Nutr 55:1137–1145. https://doi.org/10.1080/10408398.2012.687418

    Article  CAS  Google Scholar 

  12. Wang X, Gao W, Zhang J et al (2010) Subunit, amino acid composition and in vitro digestibility of proteins isolates from Chinese kabuli and desi chickpea (Cicer arietinum L.) cultivars. Food Res Int 43:567–572. https://doi.org/10.1016/j.foodres.2009.07.018

  13. Chang YW, Alli I, Molina AT, Konishi Y, Boye JI (2009) Isolation and characterization of chickpea (Cicer arietinum L.) seed protein fractions. Food Bioproc Tech 5:618–625. https://doi.org/10.1007/s11947-009-0303-y

  14. De Ron AM, Papa R, Bitocchi E et al (2015) Common bean. In: De Ron (ed) Grain legumes, handbook of plant breeding. Springer, New York, pp 1–36. https://doi.org/10.1007/978-1-4939-2797-5_1

  15. James AT, Yang A (2016) Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chem 194:284–289. https://doi.org/10.1016/j.foodchem.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  16. Kou X, Gao J, Xue Z et al (2013) Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT-Food Sci Technol 50:591–598. https://doi.org/10.1016/j.lwt.2012.08.002

    Article  CAS  Google Scholar 

  17. Yust M, Pedroche J, Girón-Calle J et al (2003) Production of ACE inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chem 81:363–369. https://doi.org/10.1016/S0308-8146(02)00431-4

    Article  CAS  Google Scholar 

  18. Serrano-Sandoval SN, Guardado-Félix D, Gutiérrez-Uribe JA (2019) Changes in digestibility of proteins from chickpeas (Cicer arietinum L.) germinated in presence of selenium and antioxidant capacity of hydrolysates. Food Chem 285:290–295. https://doi.org/10.1016/j.foodchem.2019.01.137

    Article  CAS  PubMed  Google Scholar 

  19. Xiao Y, Xing G, Rui X et al (2015) Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT - Food Sci Technol 63:1317–1324. https://doi.org/10.1016/j.lwt.2015.04.046

    Article  CAS  Google Scholar 

  20. Cortés-Giraldo I, Megías C, Alaiz M, Girón-Calle J, Vioque J (2016) Purification of free arginine from chickpea (Cicer arietinum) seeds. Food Chem 192:114–118. https://doi.org/10.1016/j.foodchem.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Pittaway JK, Ahuja KDK, Cehun M et al (2006) Dietary supplementation with chickpeas for at least 5 weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Ann Nutr Metab 50:512–518. https://doi.org/10.1159/000098143

  22. Jukanti A, Gaur P, Gowda I, Chibbar N (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108:S11–S26. https://doi.org/10.1017/S0007114512000797

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Su D, He J et al (2017) Effects of ciceritol from chickpea on human colonic microflora and the production of short chain fatty acids by in vitro fermentation. LWT-Food Sci Technol 79:294–299. https://doi.org/10.1016/j.lwt.2017.01.040

  24. Zia-Ul-Haq M, Iqbal S, Ahmad S et al (2007) Nutritional and compositional study of Desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chem 105:1357–1363. https://doi.org/10.1016/j.foodchem.2007.05.004

  25. Sarmento A, Barros L, Fernandes A et al (2014) Valorization of traditional foods: nutritional and bioactive properties of Cicer arietinum L. and Lathyrus sativus L. pulses. J Sci Food Agric 95:179–185. https://doi.org/10.1002/jsfa.6702

    Article  CAS  PubMed  Google Scholar 

  26. Thavarajah D, Thavarajah P (2012) Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Res Int 49:99–104. https://doi.org/10.1016/j.foodres.2012.08.007

    Article  CAS  Google Scholar 

  27. El-Adawy TA (2002) Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods Hum Nutr 57:83–97. https://doi.org/10.1023/A:1013189620528

    Article  CAS  PubMed  Google Scholar 

  28. Domínguez-Arispuro DM, Cuevas-Rodríguez EO, Milán-Carrillo J, León-López L, Gutiérrez-Dorado R, Reyes-Moreno C (2017) Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. J Food Sci Tech 55:638–647. https://doi.org/10.1007/s13197-017-2973-1

    Article  CAS  Google Scholar 

  29. Ghribi AM, Sila A, Przybylski R et al (2015) Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietunum L.) protein concentrate. J Funct Foods 12:512–525. https://doi.org/10.1016/j.jff.2014.12.011

  30. Arcan I, Yemenicioğlu A (2007) Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chem 103:301–312. https://doi.org/10.1016/j.foodchem.2006.07.050

    Article  CAS  Google Scholar 

  31. Sreerama YN, Sashikala VB, Pratape VM (2012) Phenolic compounds in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia and hypertension. Food Chem 133:156–162. https://doi.org/10.1016/j.foodchem.2012.01.011

    Article  CAS  Google Scholar 

  32. Zhang T, Jiang B, Miao M, Mu W, Li Y (2012) Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chem 135:904–912. https://doi.org/10.1016/j.foodchem.2012.05.097

    Article  CAS  PubMed  Google Scholar 

  33. Xue Z, Wen H, Zhai L et al (2015) Antioxidant activity and anti-proliferative effect of bioactive peptide from chickpea (Cicer arietinum L.). Food Res Int 77:75–81. https://doi.org/10.1016/j.foodres.2015.09.027

    Article  CAS  Google Scholar 

  34. Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millan F, Vioque J (2007) Affinity purification of copper chelating peptides from chickpea protein hydrolysates. J Agric Food Chem 55:3949–3954. https://doi.org/10.1021/jf063401s

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Jiang B, Zhang T et al (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106:444–450. https://doi.org/10.1016/j.foodchem.2007.04.067

    Article  CAS  Google Scholar 

  36. Arcan I, Yemenicioğlu A (2010) Effects of controlled pepsin hydrolysis on antioxidant potential and fractional changes of chickpea proteins. Food Res Int 43:140–147. https://doi.org/10.1016/j.foodres.2009.09.012

    Article  CAS  Google Scholar 

  37. Torres-Fuentes C, Alaiz M, Vioque J (2011) Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem 129:485–490. https://doi.org/10.1016/j.foodchem.2011.04.103

    Article  CAS  PubMed  Google Scholar 

  38. Zhang T, Li Y, Miao J (2011) Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietinum L.) protein hydrolysates. Food Chem 128:28–33. https://doi.org/10.1016/j.foodchem.2011.02.072

    Article  CAS  PubMed  Google Scholar 

  39. Yust MM, Millán-Linares MC, Alcaide-Hidalgo JM et al (2012) Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates. J Agric Food Chem 92:1994–2001. https://doi.org/10.1002/jsfa.5573

    Article  CAS  Google Scholar 

  40. Torres-Fuentes C, Alaiz M, Vioque J (2014) Chickpea chelating peptides inhibit copper-mediated lipid peroxidation. J Agric Food Chem 94:3181–3188. https://doi.org/10.1002/jsfa.6668

    Article  CAS  Google Scholar 

  41. Guo Y, Zhang T, Jiang B et al (2014) The effects of an antioxidative pentapeptide derived from chickpea protein hydrolysates on oxidative stress in Caco-2 and HT-29 cell lines. J Funct Foods 7:719–726. https://doi.org/10.1016/j.jff.2013.12.013

    Article  CAS  Google Scholar 

  42. Torres-Fuentes, Del Mar-Contreras M, Recio I et al (2015) Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem 180:194–202. https://doi.org/10.1016/j.foodchem.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  43. Nithiyanantham S, Selvakumar S, Siddhuraju P (2012) Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L. J Food Compos Anal 27:52–60. https://doi.org/10.1016/j.jfca.2012.04.003

  44. Fratianni F, Cardinale F, Cozzolino A et al (2014) Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (southern Italy). J Funct Foods 7:551–557. https://doi.org/10.1016/j.jff.2013.12.030

    Article  CAS  Google Scholar 

  45. Xiao Y, Xing G, Rui X et al (2014) Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Funct Foods 10:210–222. https://doi.org/10.1016/j.jff.2014.06.008

  46. Guardado-Félix D, Antunes-Ricardo M, Rocha-Pizaña MR et al (2019) Chickpea (Cicer arietinum L.) sprouts containing supranutritional levels of selenium decrease tumor growth of colon cancer cells xenografted in immune-suppressed mice. J Funct Foods 53:76–84. https://doi.org/10.1016/j.jfca.2012.04.003

    Article  CAS  Google Scholar 

  47. Saleh HM, Hassan AA, Mansour EH et al (2017) Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. J Saudi Soc Agric Sci 18(3):294–301. https://doi.org/10.1016/j.jssas.2017.09.001

  48. Pedroche J, Yust MM, Girón-Calle J et al (2002) Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. J Sci Food Agric 82:960–965. https://doi.org/10.1002/jsfa.1126

    Article  CAS  Google Scholar 

  49. Barbana C, Boye JI (2010) Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. Food Res Int 43:1642–1649. https://doi.org/10.1016/j.foodres.2010.05.003

    Article  CAS  Google Scholar 

  50. Boschin G, Scigliuolo GM, Resta D, Arnoldi A (2014) ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem 145:34–40. https://doi.org/10.1016/j.foodchem.2013.07.076

    Article  CAS  PubMed  Google Scholar 

  51. Ghribi MA, Sila A, Gafsi MI et al (2015) Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours. Int J Biol Macromol 75:276–282. https://doi.org/10.1016/j.ijbiomac.2015.01.037

    Article  CAS  Google Scholar 

  52. Sánchez-Chino XM, Jiménez-Martínez C, Vásquez-Garzón VR et al (2017) Cooked chickpea consumption inhibits colon carcinogenesis in mice induced with azoxymethane and dextran sulfate sodium. J Am Coll Nutr 36:391–398. https://doi.org/10.1080/07315724.2017.1297744

    Article  CAS  Google Scholar 

  53. Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem 245:205–222. https://doi.org/10.1016/j.foodchem.2017.10.087

    Article  CAS  PubMed  Google Scholar 

  54. González-Montoya M, Robles-Ramírez MC, Ramón-Gallegos E, Mora-Escobedo R (2016) Evaluation of the antioxidant and antiproliferative effects of three peptide fractions of germinated soybeans on breast and cervical cancer cell lines. Plant Foods Hum Nutr 71(4):368–374. https://doi.org/10.1007/s11130-016-0568-z

    Article  CAS  Google Scholar 

  55. Girón-Calle J, Vioque J, Yust MM et al (2004) Effect of chickpea aqueous extracts, organic extracts, and protein concentrates on cell proliferation. J Med Food 7:122–129. https://doi.org/10.1089/1096620041224175

    Article  PubMed  Google Scholar 

  56. Girón-Calle J, Alaiz M, Vioque J (2010) Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Res Int 43:1365–1370. https://doi.org/10.1016/j.foodres.2010.03.020

    Article  CAS  Google Scholar 

  57. Magee PJ, Owusu-Apenten R, McCann MJ et al (2012) Chickpea (Cicer arietinum) and other plant-derived protease inhibitor concentrates inhibit breast and prostate cancer cell proliferation in vitro. Nutr Cancer 64:741–748. https://doi.org/10.1080/01635581.2012.688914

  58. Xu B, Chang SK (2012) Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chem 134:1287–1296. https://doi.org/10.1016/j.foodchem.2012.02.212

    Article  CAS  PubMed  Google Scholar 

  59. Xue Z, Gao J, Zhang Z, Yu W, Wang H, Kou X (2012) Antihyperlipidemic and antitumor effects of chickpea albumin hydrolysate. Plant Foods Hum Nutr 67:393–400. https://doi.org/10.1007/s11130-012-0311-3

    Article  CAS  PubMed  Google Scholar 

  60. Lima AIG, Guerreiro J, Monteiro SAVS, Ferreira RMSB (2016) Legume seeds and colorectal cancer revisited: protease inhibitors reduce MMP-9 activity and colon cancer cell migration. Food Chem 197:30–38. https://doi.org/10.1016/j.foodchem.2015.10.063

    Article  CAS  PubMed  Google Scholar 

  61. Sánchez-Chino XM, Jiménez Martínez C, León-Espinosa EB, Garduño-Siciliano L, Álvarez-González I, Madrigal-Bujaidar E, Vásquez-Garzón VR, Baltiérrez-Hoyos R, Dávila-Ortiz G (2019) Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. J Am Coll Nutr 38:162–170. https://doi.org/10.1080/07315724.2018.1487809

    Article  CAS  PubMed  Google Scholar 

  62. Shi W, Hou T, Guo D, He H (2019) Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat. J Funct Foods 54:136–145. https://doi.org/10.1016/j.jff.2019.01.001

    Article  CAS  Google Scholar 

  63. Yang Y, Zhou L, Gu Y, Zhang Y, Tang J, Li F, Shang W, Jiang B, Yue X, Chen M (2007) Dietary chickpeas reverse visceral adiposity, dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet. Br J Nutr 98:720–726. https://doi.org/10.1017/S0007114507750870

    Article  CAS  PubMed  Google Scholar 

  64. Pittaway JK, Robertson IK, Ball MJ (2008) Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc 108:1010–1013. https://doi.org/10.1016/j.jada.2008.03.009

  65. Boualga A, Prost J, Taleb-Senouci D, Krouf D, Kharoubi O, Lamri-Senhadji M, Belleville J, Bouchenak M (2009) Purified chickpea or lentil proteins impair VLDL metabolism and lipoprotein lipase activity in epididymal fat, but not in muscle, compared to casein, in growing rats. Eur J Nutr 48:162–169. https://doi.org/10.1007/s00394-009-0777-4

    Article  CAS  PubMed  Google Scholar 

  66. Amaral AL, De Sousa-Ferreira E, Augusto-Neves V et al (2014) Legumin from chickpea: hypolipidemic effect in the liver of hypercholesterolemic rats. Nutr Food Sci 44:378–388. https://doi.org/10.1108/NFS-10-2013-0115

    Article  Google Scholar 

  67. Xue Z, Hou X, Yu W, Wen H, Zhang Q, Li D, Kou X (2018) Lipid metabolism potential and mechanism of CPe-III from chickpea (Cicer arietinum L.). Food Res Int 104:126–133. https://doi.org/10.1016/j.foodres.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  68. Ercan P, El SN (2016) Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem 205:163–169. https://doi.org/10.1016/j.foodchem.2016.03.012

  69. Goñi I, Valentín-Gamazo C (2003) Chickpea flour ingredient slows glycemic response to pasta in healthy volunteers. Food Chem 81:511–515. https://doi.org/10.1016/S0308-8146(02)00480-6

    Article  CAS  Google Scholar 

  70. Akhtar HMS, Abdin M, Hamed YS et al (2019) Physicochemical, functional, structural, thermal characterization and α-amylase inhibition of polysaccharides from chickpea (Cicer arietinum L.) hulls. Food Sci Technol 113:108265. https://doi.org/10.1016/j.lwt.2019.108265

  71. Kan A, Özçelik B, Kartal M et al (2010) In vitro antimicrobial activities of Cicer arietinum L (chickpea). Trop J Pharm 9:475–481. https://doi.org/10.4314/tjpr.v9i5.68386

    Article  Google Scholar 

  72. Ye XY, Ng TB, Rao PF (2002) Cicerin and arietin, novel chickpea peptides with different antifungal potencies. Peptides 23:817–822. https://doi.org/10.1016/S0196-9781(02)00005-0

    Article  CAS  PubMed  Google Scholar 

  73. Chu KT, Liu KH, Ng TB (2003) Cicerarin, a novel antifungal peptide from the green chickpea. Peptides 24:659–663. https://doi.org/10.1016/S0196-9781(03)00134-7

    Article  CAS  PubMed  Google Scholar 

  74. García-Lafuente A, Moro C, Manchón N, Gonzalo-Ruiz A, Villares A, Guillamón E, Rostagno M, Mateo-Vivaracho L (2014) In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem 161:216–223. https://doi.org/10.1016/j.foodchem.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  75. Hassan L, Dahham S, Fadul S, Umar MI, Majid AS, Khaw KY, Majid AM (2016) Evaluation of in vitro and in vivo anti-inflammatory effects of (−)-pseudosemiglabrin, a major phytoconstituent isolate form Tephrosia apollinea (Delile) DC. J Ethnopharmacol 193:312–320. https://doi.org/10.1016/j.jep.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  76. Li Z, Zhou X, Wong H et al (2016) In vivo and in vitro antiinflammatory effects of Zao-Jiao-ci (the spine of Gleditsia sinensis Lam.) aqueous extract and its mechanism of action. J Ethnopharmacol 192:192–200. https://doi.org/10.1016/j.jep.2016.07.020

  77. Wahby MM, Mohammed DS, Newairy AA, Abdou HM, Zaky A (2017) Aluminum-induced molecular neurodegeneration: the protective role of genistein and chickpea extract. Food Chem Toxicol 107:57–67. https://doi.org/10.1016/j.fct.2017.05.044

    Article  CAS  PubMed  Google Scholar 

  78. Milán-Noris AK, Gutiérrez-Uribe JA, Santacruz A, Serna-Saldívar SO, Martínez-Villaluenga C (2018) Peptides and isoflavones in gastrointestinal digests contribute to the antiinflammatory potential of cooked or germinated Desi and Kabuli chickpea (Cicer arietinum L.). Food Chem 268:66–76. https://doi.org/10.1016/j.foodchem.2018.06.068

    Article  CAS  PubMed  Google Scholar 

  79. Masroor D, Baig SG, Ahmed S, Ahmad SM, Hasan M (2018) Analgesic, anti-inflammatory and diuretic activities of Cicer arietinum L. Pak J Pharm 31(2):553–558. https://doi.org/10.13140/RG.2.2.15583.97440

    Article  CAS  Google Scholar 

Publications Generated by Authors

  • Hernández-Álvarez AJ, Carrasco-Castilla J, Dávila-Ortiz G, Alaiz M, Girón-Calle J, Vioque-Peña J, Jacinto-Hernández C, Jiménez-Martínez C (2013) Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds. J Sci Food Agric 93(4):961–966. https://doi.org/10.1002/jsfa.5841

  • Hernández-Jabalera A, Cortés-Giraldo I, Dávila-Ortíz G, Vioque J, Alaiz M, Girón-Calle J, Megías C, Jiménez-Martínez C (2015) Influence of peptides–phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus. Food Chem 178:346–357 ISSN: 03088146

    Article  Google Scholar 

  • Reyes-Mendez AI, Figueroa-Hernández C, Melgar-Lalanne G, Hernández-Sánchez H, Dávila-Ortiz, Jimenez Martínez C (2015) Production of calcium- and iron-binding peptides by probiotic strains of Bacillus subtilis, B. clausii AND B. coagulans GBI-30. Revista Mexicana de Ingeniería Química 14(1):1–9 ISSN: 272415662

    CAS  Google Scholar 

  • Sánchez-Chino X, Jiménez-Martínez C, Dávila-Ortiz G, González IÁ, Madrigal-Bujaidar E (2015) Nutrient and nonnutrient components of legumes, and its Chemopreventive activity: a review. Nutr Cancer 67(3):401–410. ISSN: 01635581. https://doi.org/10.1080/01635581.2015.1004729

    Article  CAS  PubMed  Google Scholar 

  • León-Espinosa EB, Sánchez-Chino X, Garduño-Siciliano L, Álvarez-González RI, Dávila-Ortiz G, Madrigal-Bujaidar E, Téllez-Medina DI, Jiménez-Martínez C (2016) Hypocholesterolemic and Anticarcinogenic effect of Vicia faba protein Hydrolyzates. Nutr Cancer 68(5):856–864. https://doi.org/10.1080/01635581.2016.1180406

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Benítez, T.; Jiménez-Martínez, C.; Perea-Flores, M. J.; Téllez-Medina, D. I.; Dávila Ortiz, G. Microencapsulation of bayo bean (Phaseolus vulgaris) protein hydrolysate with inhibitory activity on angiotensin-I converting enzyme through freeze-drying. Revista Mexicana de Ingeniería Química, vol. 15, núm. 3, 2016, pp. 797–807

  • Sánchez Mendoza NA, Martínez CJ, Martínez AC, del Campo Barba SM, Ortiz GD (2016) Caracterización física, nutricional y no nutricional de las semillas de Inga paterno. Rev Chil Nutr 43(4):2016

    Article  Google Scholar 

  • Sánchez Chino XM, Martínez CJ, Vásquez Garzón VR, González IÁ, Treviño SV, Bujaidar EM, Ortiz GD, Hoyos RB (2017) Cooked chickpea consumption inhibits colon carcinogenesis in mice induced with azoxymethane and dextran sulfate sodium. J Am Coll Nutr 36(5):391–398

    Article  Google Scholar 

  • Nikte Y. Martínez-Palma, Gloria Dávila-Ortiz, Cristian Jiménez-Martínez, Eduardo Madrigal-Bujaidar, Isela Álvarez-González (2017). Chemopreventive and antioxidant effect of polyphenol free Spirulina maxima and its hydrolyzed protein content: Investigation on azoxymethane treated mice Pharmacogn Mag 2017 Jul;13(Suppl 2):S164-S169. doi: https://doi.org/10.4103/0973-1296.210197

  • Sánchez-Mendoza NA, Ruiz-Ruiz JC, Dávila-Ortiz G, Jiménez-Martínez C (2017) Propiedades tecnofuncionales y biológicas de harina, aislado y fracciones proteicas mayoritarias de semillas de Inga paterno. CyTA-Journal of Food 15(3):400–408. https://doi.org/10.1080/19476337.2017.1286522

    Article  CAS  Google Scholar 

  • Chim-Chi Y, Gallegos-Tintoré S, Jiménez-Martínez C, Dávila-Ortiz G, Chel-Guerrero L (2018) Antioxidant capacity of Mexican chia (Salvia hispanica L.) protein hydrolyzates. Journal of Food Measurement and Characterization 12(1):323–331

    Article  Google Scholar 

  • Sánchez-Chino, León-Espinosa, Garduño-Siciliano, González A, Madrigal-Bujaidar, Vásquez-Garzón, Baltiérrez-Hoyos, Dávila-Ortiz, Jiménez-Martínez C (2018) Protective effect of chickpea protein hydrolyzates on colon carcinogenesis associated with a hypercaloric diet. Journal of the American College of Nutrition Sep 13:1–9. https://doi.org/10.1080/07315724.2018.1487809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Instituto Politécnico Nacional for the financial support through grant SIP-20200299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiménez-Martínez Cristian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridy, JC.M., Stephanie, CG.M., Gabriela, MM.O. et al. Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review. Plant Foods Hum Nutr 75, 142–153 (2020). https://doi.org/10.1007/s11130-020-00814-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00814-2

Keywords

Navigation