Skip to main content
Log in

Sintered Silicon Carbide based Materials: Mechanical Properties vs. Structure

  • Published:
Refractories and Industrial Ceramics Aims and scope

The paper offers a review of literature published over the past 15 years concerning liquid-phase sintering of silicon carbide materials with various sintering activating additives. The microstructure and specifics of its formation have been investigated. The dependences of crack resistance, strength, and hardness on the material structure were studied. The relationship between the forming microstructure of the liquid-phase sintered material and its mechanical properties has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. S. N. Perevislov, V. D. Chupov, and M. V. Tomkovich, “Effect of the activating additives of yttrium aluminum garnet and magnesia spinel on compactability and mechanical properties of SiC-ceramics,” Vopr. Materialoved., 65(1), 123 – 129 (2011).

    Google Scholar 

  2. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, and M. V. Tomkovich, “Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Ind. Ceram., 58(5), 577 – 582 (2018).

    CAS  Google Scholar 

  3. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Production of ceramic materials based on SiC with low-melting oxide additives,” Glass Ceram., 75(9/10), 400 – 407 (2019).

    CAS  Google Scholar 

  4. F. Aldinger and V. A. Weberruss, Advanced Ceramics and Future Materials, Wiley (2010).

  5. A. P. Garshin, V. M. Gropyanov, G. P. Zaytsev, et al., Ceramics for Machine-building [in Russian], Nauchtekhlitizdat, Moscow (2003).

    Google Scholar 

  6. E. Gomez, J. Echeberria, I. Iturrizab, and F. Castro, “Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2,” J. Eur. Ceram. Soc., 24(9), 2895 – 2903 (2004).

    CAS  Google Scholar 

  7. S. Baud, F. Thevenot, and C. Chatillon, “High temperature sintering of SiC with oxide additives. Part 2: Vaporization processes in powder beds and gas-phase analysis by mass spectrometry,” J. Eur. Ceram. Soc., 23(1), 9 – 18 (2003).

    CAS  Google Scholar 

  8. S. Baud, F. Thevenot, and C. Chatillon, “High temperature sintering of SiC with oxide additives. Part 3: Quantitative vaporization of SiC–Al2O3 powder beds as revealed by mass spectrometry,” J. Eur. Ceram. Soc., 23(1), 19 – 27 (2003).

    CAS  Google Scholar 

  9. S. Baud, F. Thevenot, and C. Chatillon, “High temperature sintering of SiC with oxide additives. Part 4: Powder beds and the influence of vaporization on the behaviour of SiC compacts,” J. Eur. Ceram. Soc., 23(1), 29 – 36 (2003).

    CAS  Google Scholar 

  10. S. Baud, F. Thevenot, A. Pisch, and C. Chatillon, “High temperature sintering of SiC with oxide additives. Part 1: Analysis in the SiC–Al2O3 and SiC–Al2O3–Y2O3 systems,” J. Eur. Ceram. Soc.23(1), 1 – 8 (2003).

    CAS  Google Scholar 

  11. J. Ihle, M. Herrmann, and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide. Part 1: Interaction between Al2O3 and SiC,” J. Eur. Ceram. Soc.25(7), 987 – 995 (2005).

    CAS  Google Scholar 

  12. J. Ihle, M. Herrmann, and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide. Part 2: Interaction between Y2O3 and SiC”, J. Eur. Ceram. Soc., 25(7), 997 – 1003 (2005).

    CAS  Google Scholar 

  13. J. Ihle, M. Herrmann, and J. Adler, “Phase formation in porous liquid phase sintered silicon carbide. Part 3: Interaction between Al2O3–Y2O3 and SiC,” J. Eur. Ceram. Soc., 25(7), 1005 – 1013 (2005).

    CAS  Google Scholar 

  14. A. Can, M. Herrmann, D. S. Mclachlan, et al., “Densification of liquid phase sintered silicon carbide,” J. Eur. Ceram. Soc.26(9), 1707 – 1713 (2006).

    CAS  Google Scholar 

  15. Z. H. Huang, D. C. Jia, Y. Zhou, and Y. G. Liu, “A new sintering additive for silicon carbide ceramic,” Ceram. Int., 29(1), 13 – 17 (2003).

    CAS  Google Scholar 

  16. K. Suzuki and M. Sasaki, “Effects of sintering atmosphere on grain morphology of liquid-phase-sintered SiC with Al2O3 additions,” J. Eur. Ceram. Soc., 25(9), 1611 – 1618 (2005).

    CAS  Google Scholar 

  17. S. K. C. Pillai, B. Baron, M. J. Pomeroy, and S. Hampshire, “Effect of oxide dopants on densification, microstructure and mechanical properties of alumina – silicon carbide nanocomposite ceramics prepared by pressureless sintering,” J. Eur. Ceram. Soc., 24(12), 3317 – 3326 (2004).

    CAS  Google Scholar 

  18. K. Suzuki, N. Kageyama, and T. Kanno, “Improvement in the oxidation resistance of liquid-phase-sintered silicon carbide with aluminum oxide additions,” Ceram. Int., 31(6), 879 – 882 (2005).

    CAS  Google Scholar 

  19. O. Fabrichnaya, M. Zinkevich, and F. Aldinger “Thermodynamic modelling in the ZrO2–La2O3–Y2O3–Al2O3 system,” Int. J. Mater. Res., 98(9), 838 – 846 (2007).

    CAS  Google Scholar 

  20. O. Fabrichnaya, G. Savinykh, T. Zienert, et al., “Phase relations in the ZrO2–Sm2O3-Y2O3–Al2O3 system: experimental investigation and experimental modelling,” Int. J. Mater. Res., 103(12), 1469 – 1487 (2012).

    CAS  Google Scholar 

  21. O. Fabrichnaya, G. Savinykh, G. Schreiber, et al., “Phase relations in the ZrO2–Nd2O3–Y2O3–Al2O3 system: experimental study and thermodynamic modelling,” J. Eur. Ceram. Soc., 32(3), 171 – 185 (2012).

    Google Scholar 

  22. R. Neher, M. Herrmann, K. Brandt, et al., “Liquid phase formation in the system SiC, Al2O3, Y2O3,” J. Eur. Ceram. Soc., 31, 1/2, 175 – 181 (2011).

    CAS  Google Scholar 

  23. O. Fabrichnaya, G. Savinykh, G. Schreiber, and H. J. Seifert, “Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system,” Int. J. Mater. Res., 100(11), 1521 – 1528 (2009).

    CAS  Google Scholar 

  24. O. Fabrichnaya, G. Savinykh, and G. Schreiber, “Phase relations in the ZrO2–La2O3–Y2O3–Al2O3 system: experimental studies and phase modeling,” J. Eur. Ceram. Soc., 33(1), 37 – 49 (2013).

    CAS  Google Scholar 

  25. K. Biswas, G. Rixecker, and F. Aldinger, “Effect of rare-earth cation additions on the high temperature oxidation behavior of LPS–SiC,” Mater. Sci. Eng. A., 374(1/2), 56 – 63 (2004).

    Google Scholar 

  26. J. Gao, H. Xiao, and H. Du, “Effect of Y2O3 addition on ammono sol-gel synthesis and sintering of Si3N4–SiC nanocomposite powder,” Ceram. Int.29(6), 655 – 661 (2003).

    CAS  Google Scholar 

  27. S. Guo, N. Hirosaki, H. Tanaka, et al., “Oxidation behavior of liquid-phase sintered SiC with AlN and Er2O3 additives between 1200°C and 1400°C,” J. Eur. Ceram. Soc.23(12), 2023 – 2029 (2003).

    CAS  Google Scholar 

  28. S. P. Taguchi, R. M. Balestra, G. C. R. Garcia, and S. Ribeiro, “Spontaneous infiltrations of compound systems of Y2O3, Sm2O3, Re2O3, Al2O3 and AlN in SiC ceramics,” Ceram. Int., 36(1), 9 – 14 (2010).

    CAS  Google Scholar 

  29. K. Biswas, G. Rixecker, and F. Aldinger, “Improved high temperature properties of SiC–ceramics sintered with Lu2O3-containing additives,” J. Eur. Ceram. Soc., 23(7), 1099 – 1104 (2003).

    CAS  Google Scholar 

  30. S. N. Perevislov, V. D. Chupov, S. S. Ordanyan, “Properties of sintered materials based on silicon carbide micro-powders,” Vopr. Materialoved., 69(1), 38 – 43 (2012).

    Google Scholar 

  31. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nano-size component,” Glass Ceram., 73(7/8), 249 – 252 (2016).

    CAS  Google Scholar 

  32. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Liquid- sintered SiC based materials with additive low oxide oxides,” IOP Conf. Series: Mater. Sci. Eng., IOP Publ., 525(1), 012073 (2019).

  33. S. N. Perevislov, M. V. Tomkovich, and A. S. Lysenkov, “Silicon carbide liquid-phase sintering with various activating agents,” Refract. Ind. Ceram., 59(5), 522 – 527 (2019).

    CAS  Google Scholar 

  34. M. F. Zawrah and L. Shaw, “Liquid-phase sintering of SiC in presence of CaO,” Ceram. Int., 30(5), 721 – 725 (2004).

    CAS  Google Scholar 

  35. A. S. Lysenkov, K. A. Kim, D. D. Titov, et al., “Composite material Si3N4/SiC with calcium aluminate additive,” J. Phys., Conf. Series., IOP Publ., 1134(1), 012036 (2018).

  36. J. H. Lee, D. Y. Kim, and Y.W. Kim, “Grain boundary crystallization during furnace cooling of α-SiC sintered with Y2O3–Al2O3–CaO,” J. Eur. Ceram. Soc., 26(7), 1267 – 1272 (2006).

    CAS  Google Scholar 

  37. U. I. Ryabkovyi and P. A. Sitnikov, “Conditions for preparation of oxide components and their effect on properties of Al2O3–ZrO2–SiC composite,” Refract. Ind. Ceram., 44(2), 115 – 118 (2003).

    Google Scholar 

  38. G. Magnani and L. Beaulardi, “Long-term oxidation behavior of liquid phase pressureless sintered SiC–AlN ceramics obtained without powder bed,” J. Eur. Ceram. Soc., 26(15), 3407 – 3413 (2006).

    CAS  Google Scholar 

  39. K. Strecker and M. J. Hoffmann, “Effect of AlN-content on the microstructure and fracture toughness of hot-pressed and heat-treated LPS–SiC ceramics,” J. Eur. Ceram. Soc., 25(6), 801 – 807 (2005).

    CAS  Google Scholar 

  40. M. Hotta and J. Hojo, “Inhibition of grain growth in liquid- phase sintered SiC ceramics by AlN additive and spark plasma sintering,” J. Eur. Ceram. Soc., 30(10), 2117 – 2122 (2010).

    CAS  Google Scholar 

  41. R. M. Balestra, S. Ribeiro, S. P. Taguchi, et al., “Wetting behavior of Y2O3/AlN additive on SiC ceramics,” J. Eur. Ceram. Soc., 26(16), 3881 – 3886 (2006).

    CAS  Google Scholar 

  42. K. Suzuki and M. Sasaki, “Microstructure and mechanical properties of liquid-phase-sintered SiC with AlN and Y2O3 additions,” Ceram. Int., 31(5), 749 – 755 (2005).

    CAS  Google Scholar 

  43. A. Zangvil and R. Ruh, “Phase relationships in the silicon carbide — aluminum nitride system,” J. Am. Ceram. Soc., 71(10), 884 – 890 (1988).

    CAS  Google Scholar 

  44. Z. Pan, O. Fabrichnaya, H. J. Seifert, et al., “Thermodynamic evaluation of the Si–C–Al–Y–O system for LPS–SiC application,” J. Phase Equilibr., 31(3), 238 – 249 (2010).

    Google Scholar 

  45. N. Zhang, H. Ru, Q. Cai, et al., “Investigation of loss weight and densification of SiC–Al2O3–Y2O3 ceramic composite on sintering,” J. Rare Earths., 23, 132 – 136 (2005).

    Google Scholar 

  46. R. Huang, H. Gu, J. Zhang, and D. Jiang, “Effect of Y2O3–Al2O3 ratio on intergranular phases and films in tape-casting α-SiC with high toughness,” Acta Mater., 53(8), 2521 – 2529 (2005).

    CAS  Google Scholar 

  47. M. Castillo-Rodríguez, A. Muñoz, and A. Domínguez-Rodríguez, “Effect of atmosphere and sintering time on the microstructure and mechanical properties at high temperatures of -SiC sintered with liquid phase Y2O3–Al2O3,” J. Eur. Ceram. Soc., 26(12), 2397 – 2405 (2006).

    Google Scholar 

  48. S. N. Perevislov, V. D. Chupov, S. S. Ordanyan, and M. V. Tomkovich, “Obtaining high density silicon carbide materials by the liquid-phase sintering method in the component system SiC–Al2O3–Y2O3–MgO,” Ogneup. Tekh. Ker., No. 4/5, 26 – 32 (2011).

  49. S. N. Perevislov, “Study of the structure and strength properties of liquid-phase sintered silicon carbide ceramics,” Deform. Razr. Mat., No. 5, 25 – 31 (2013).

    Google Scholar 

  50. A. L. Ortiz, A. Munoz-Bernabé, O. Borrero-López, et al., “Effect of sintering atmosphere on the mechanical properties of liquid- phase-sintered SiC,” J. Eur. Ceram. Soc., 24 (10/11), 3245 – 3249 (2004).

    CAS  Google Scholar 

  51. G. D. Semchenko, I. Yu. Shuteeva, A. N. Butenko, et al., Zol-gel Compositions for Multifunctional Applications [in Russian], Rainbow, Kharkov (2011).

    Google Scholar 

  52. S. V. Vikhman, O. A. Kozhevnikov, S. S. Ordanyan, and V. D. Chupov, “Solution-based method of producing silicon carbide mixture with oxide sintering activator and method of producing ceramic based thereon,” Russian Federation patent 2455262, appl. No. 2010124772/03, filed June 16, 2010, publ. July 10, 2012, Bul. No. 19.

  53. S. N. Perevislov, I. B. Panteleev, S. V. Vikhman, et al., “Co-precipitation of oxides from salt solution on the silicon carbide particle surface,” Ogneup. Tekh. Keram., No. 9, 9 – 16 (2015).

    Google Scholar 

  54. D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordanyan, et al., “Precipitation of the eutectic Al2O3–ZrO2 (Y2O3) on the surface of SiC particles,” Glass Ceram., 74(1/2), 43 – 47 (2017).

    CAS  Google Scholar 

  55. S. N. Perevislov, “Grinding silicon carbide powders in a planetary mill,” Vopr. Materialoved., 68, 4, 73 – 80 (2011).

    Google Scholar 

  56. A. Gubernat, L. Stobierski, and P. Łabaj, “Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives,” J. Eur. Ceram. Soc., 27(2/3), 781 – 789 (2007).

    CAS  Google Scholar 

  57. F. Chen, Y. Yang, Q. Shen, and L. Zhang, “Macro/micro structure dependence of mechanical strength of low temperature sintered silicon carbide ceramic foams,” Ceram. Int., 38(6), 5223 – 5229 (2012).

    CAS  Google Scholar 

  58. O. Borrero-López, A. L. Ortiz, F. Guiberteau, and N. P. Padture, “Microstructural design of sliding-wear-resistant liquid-phasesintered SiC: an overview,” J. Eur. Ceram. Soc., 27(11), 3351 – 3357 (2007).

    Google Scholar 

  59. S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7/8), 265 – 268 (2013).

    CAS  Google Scholar 

  60. K. Ando, K. Furusawa, K. Takahashi, and S. Sato, “Crack-healing ability of structural ceramics and a new methodology to guarantee the structural integrity using the ability and proof-test,” J. Eur. Ceram. Soc., 25(5), 549 – 558 (2005).

    CAS  Google Scholar 

  61. L. S. Sigl and H. J. Kleebe, “Core/rim structure of liquidphase- sintered silicon carbide,” J. Am. Ceram. Soc., 76(3), 773 – 776 (1993).

    CAS  Google Scholar 

  62. S. J. Dillon and M. P. Harmer, “Demystifying the role of sintering additives with “complexion”,” J. Eur. Ceram. Soc., 28(7), 1485 – 1493 (2008).

    CAS  Google Scholar 

  63. F. Rodríguez-Rojas, A. L. Ortiz, O. Borrero-López, and F. Guiberteau, “Effect of the sintering additive content on the non-protective oxidation behavior of pressureless liquid-phase-sintered α-SiC in air,” J. Eur. Ceram. Soc., 30(6), 1513 – 1518 (2010).

    Google Scholar 

  64. J. K. Lee, S. P. Lee, K. S. Cho, et al., “Characteristic evaluation of liquid-phase sintered SiC materials by a nondestructive technique,” J. Nucl. Mater., 386, 487 – 490 (2009).

    Google Scholar 

  65. T. S. Suzuki, T. Uchikoshi, and Y. Sakka, “Effect of sintering conditions on microstructure orientation in -SiC prepared by slip casting in a strong magnetic field,” J. Eur. Ceram. Soc., 30(14), 2813 – 2817 (2010).

    CAS  Google Scholar 

  66. C. Cui, Y. T. Wang, J. G. Jiang, et al., “Microstructure of reactive sintered Al bonded Si3N4–SiC ceramics,” Trans. Nonfer. Metals Soc. China, 16, 42 – 45 (2006).

    Google Scholar 

  67. Y. I. Lee, Y. W. Kim, and M. Mitomo, “Microstructure stability of fine-grained silicon carbide ceramics during annealing,” J. Mater. Sci., 39(11), 3613 – 3617 (2004).

    CAS  Google Scholar 

  68. O. H. Kwon and G. L. Messing, “Kinetic analysis of solution- precipitation during liquid-phase sintering of alumina,” J. Am. Ceram. Soc., 73(2), 275 – 281 (1990).

    CAS  Google Scholar 

  69. K. A.Weidenmann, G. Rixecker, and F. Aldinger, “Liquid phase sintered silicon carbide (LPS–SiC) ceramics having remarkably high oxidation resistance in wet air,” J. Eur. Ceram. Soc., 26(13), 2453 – 2457 (2006).

    CAS  Google Scholar 

  70. G. Magnani, L. Beaulardi, A. Brentari, et al., “Crack healing in liquid-phase pressureless-sintered silicon carbide – aluminum nitride composites,” J. Eur. Ceram. Soc., 30(3), 769 – 773 (2010).

    CAS  Google Scholar 

  71. S. K. Lee, W. Ishida, V. G. Cao, and L. Lee, “Crack-healing behavior and resultant strength properties of silicon carbide ceramics,” J. Eur. Ceram. Soc., 25(5), 569 – 576 (2005).

    CAS  Google Scholar 

  72. L. Vargas-Gonzalez, R. F. Speyer, and J. Campbell, “Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics,” Int. J. Appl. Ceram. Technol., 7(5), 643 – 651 (2010).

    CAS  Google Scholar 

  73. J. M. Ma, F. Ye, C. F. Liu, et al., “Microstructure and mechanical properties of liquid phase sintered silicon carbide composites,” J. Zhej. Univ. Sci. A., 11(10), 766 – 770 (2010).

    CAS  Google Scholar 

  74. O. Borrero-López, A. L. Ortiz, F. Guiberteau, and N. P. Padture, “Effect of liquid-phase content on the contact-mechanical properties of liquid-phase sintered α-SiC,” J. Eur. Ceram. Soc., 27(6), 2521 – 2527 (2007).

    Google Scholar 

  75. D. Sciti and A. Bellosi, “Effects of additives on densification, microstructure and properties of liquid-phase sintered silicon carbide,” J. Mater. Sci., 35, 3849 – 3855 (2000).

    CAS  Google Scholar 

  76. B. G. Simba, C. Santos, M. J. Bondioli, et al., “Strength improvement of LPS-SiC ceramics by oxidation treatment,” Int. J. Ref. Met. Hard Mater., 28(4), 484 – 488 (2010).

    CAS  Google Scholar 

  77. V. D. Chupov and A. S. Kharlanov, “Strength of silicon carbide and silicon nitride based ceramic materials,” Ogneup. Tekh. Ker., No. 9, 16 – 18 (2006).

    Google Scholar 

  78. Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, “Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry,” J. Eur. Ceram. Soc., 22, 2689 – 2696 (2002).

    CAS  Google Scholar 

  79. S. Baud and F. Thevenot, “Microstructures and mechanical properties of liquid-phase sintered seeded silicon carbide,” Mater. Chem. Phys., 67, 165 – 174 (2001).

    CAS  Google Scholar 

  80. S. Guicciardi, A. Balbo, D. Sciti, et al., Nanoindentation characterization of SiC–based ceramics,” J. Eur. Ceram. Soc., 27(2/3), 1399 – 1404 (2007).

  81. O. Borrero-López, A. Pajares, A. L. Ortiz, and F. Guiberteau, “Hardness degradation in liquid-phase sintered SiC with prolonged sintering,” J. Eur. Ceram. Soc., 27(11), 3359 – 3364 (2007).

    Google Scholar 

  82. S. Mandal, A. S. Sanyal, K. K. Dhargupta, and S. Ghatak, “Gas pressure sintering of β-SiC – γ-AlON composite in nitrogen/argon environment,” Ceram. Int., 27, 473 – 479 (2001).

    CAS  Google Scholar 

  83. I. M. Hutchings, Tribology, Friction and Wear of Engineering Materials, British Library Cataloguing in Publication Data (2017).

    Google Scholar 

  84. V. D. Krstic, M. D. Vlajic, and R. A. Verall, “SiC ceramics for nuclear applications,” Adv. Ceram. Mater. Eng. Mater., 122 – 124, 387 – 396 (1996).

  85. J. Briggs, Engineering Ceramics in Europe and the USA, Enceram. Menith Wood. UK, Worcester (2011).

  86. S. N. Perevislov and I. A. Bespalov, “Shock-resistant silicon carbide based ceramic materials,” Pisma Zh. Tekh. Fiz., 43(15), 73 – 78 (2017).

    Google Scholar 

  87. S. N. Perevislov, I. A. Bespalov, and M. V. Tomkovich, “Influence of structure modification of silicon carbide materials on their dynamic properties,” Refract. Ind. Ceram., 59(4), 359 – 364 (2018).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 9, September, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomkovich, M.V., Perevislov, S.N., Panteleev, I.B. et al. Sintered Silicon Carbide based Materials: Mechanical Properties vs. Structure. Refract Ind Ceram 60, 445–454 (2020). https://doi.org/10.1007/s11148-020-00383-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00383-6

Keywords

Navigation