Skip to main content
Log in

Surface Modification of Ultradisperse Diamonds by Vacuum Heat Treatment

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of vacuum annealing temperature at 10–2 Pa on the surface structure and functionality of ultradisperse diamond (UDD) produced by detonation synthesis was studied using Raman scattering, IR absorption, x-ray diffraction, and electron paramagnetic resonance techniques. Vacuum annealing at ≤750oC did not affect the structure of diamond nanoparticles although amorphous sp2-hybridized carbon began to form on the particle surfaces at higher temperatures. The UDD surface was completely graphitized and the diamond structure of the particle nucleus was preserved after annealing at 1050oC. Very few functional groups were observed on the UDD surface after annealing at 660–750oC so that the surface remained highly active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vul′ and O. Shenderova (Eds.), Detonation Nanodiamonds: Science and Applications, Pan Stanford Publishing, Boca Raton (2013).

  2. O. A. Williams (Ed.), Nanodiamond, The Royal Society of Chemistry, London (2014).

    Google Scholar 

  3. D. Ho (Ed.), Nanodiamonds: Applications in Biology and Nanoscale Medicine, Springer Science + Business Media, New York (2010).

    Google Scholar 

  4. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nat. Nanotechnol., 7, 11–23 (2012).

    Article  ADS  Google Scholar 

  5. J.-C. Arnault (Ed.), Nanodiamonds, Elsevier, London (2017).

    Google Scholar 

  6. K. Turcheniuk and V. Mochalin, Nanotechnology, 28, 252001 (1–27) (2017).

  7. L. Lai and A. S. Barnard, J. Nanosci. Nanotechnol., 15, 989–999 (2015).

    Google Scholar 

  8. V. A. Lapina, S. B. Bushuk, T. A. Pavich, and A. V. Vorobey, Zh. Prikl. Spektrosk., 83, No. 3, 347–353 (2016) [V. A. Lapina, S. B. Bushuk, T. A. Pavich, and A. V. Vorobey, J. Appl. Spectrosc., 83, 344–349 (2016)].

  9. A. Krueger, in: Current Issues and Challenges in Surface Chemistry of Nanodiamonds, J.-C. Arnault (Ed.), Elsevier, London (2017), pp. 184–242.

  10. A. P. Koshcheev, Ross. Khim. Zh., LII, No. 5, 88–96 (2008).

  11. D. S. Volkov, M. A. Proskurnin, and M. V. Korobov, Carbon, 74, 1–13 (2014).

    Article  Google Scholar 

  12. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, J. Am. Chem. Soc., 128, 11635–11642 (2006).

    Article  Google Scholar 

  13. G. Jarre, Y. Liang, P. Betz, D. Lang, and A. Krueger, Chem. Commun., 47, 544–546 (2011).

    Article  Google Scholar 

  14. J. Ackermann and A. Krueger, Nanoscale, 11, 8012–8019 (2019).

    Article  Google Scholar 

  15. J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, S. Ren, and X. Qu, Electrochim. Acta, 72, 68–73 (2012).

    Article  Google Scholar 

  16. V. L. Kuznetsov and Yu. V. Butenko, Diamond phase transitions at nanoscale, in: O. A. Shenderova and D. M. Gruen (Eds.), Ultrananocrystalline Diamond, 2nd edn., Elsevier Ltd., Oxford, UK (2012), Chap. 7, pp. 181–244.

  17. Yu. V. Butenko, V. L. Kuznetsov, E. A. Paukshtis, A. I. Stadnichenko, I. N. Mazov, S. I. Moseenkov, A. I. Boronin, and S. V. Kosheev, Fullerenes, Nanotubes, Carbon Nanostruct., 14, 557–564 (2006).

    Article  Google Scholar 

  18. T. Petit, J.-C. Arnault, H. A. Girard, M. Sennour, and P. Bergonzo, Phys. Rev. B: Condens. Matter Mater. Phys., 84, 233407 (1–15) (2011).

  19. http://sinta.biz/nanoalmazy.

  20. G. A. Gusakov, M. P. Samtsov, and E. S. Voropai, Zh. Prikl. Spektrosk., 84, No. 4, 545–553 (2017) [G. A. Gusakov, M. P. Samtsov, and E. S. Voropay, J. Appl. Spectrosc., 84, 573–580 (2017)].

  21. M. Mermoux, A. Crisci, T. Petit, H. A. Girard, and J.-C. Arnault, J. Phys. Chem. C, 118, 23415–23425 (2014).

    Google Scholar 

  22. G. A. Gusakov, M. P. Samtsov, and E. S. Voropai, in: Proc. Vth Int. Sci. Conf., Part 2, Problems on the Interaction of Radiation and Matter [in Russian], November 14–16, 2018, Gomel, F. Skorina GSU (2018), pp. 79–84; http://conference.gsu.by.

  23. Yu. A. Bagaryatskii, X-ray Diffraction in Physical Materials Science [in Russian], Nauchn.-Tekh. Izd. Literatury po Chern. Tsv. Metall., Moscow (1961).

    Google Scholar 

  24. A. E. Aleksenskii, M. V. Baidakova, A. Y. Vul, V. Y. Davydov, and Y. A. Pevtsova, Phys. Solid State, 39, 1007–1015 (1997).

    Article  ADS  Google Scholar 

  25. A. E. Aleksenskii, M. V. Baidakova, A. Y. Vul′, and V. I. Siklitskii, Fiz. Tverd. Tela, 41, 740–743 (1999).

  26. A. I. Shames, A. M. Panich, W. Kempinski, A. E. Alexenskii, M. V. Baidakova, A. T. Dideikin, V. Yu. Osipov, V. I. Siklitski, E. Osawad, M. Ozawad, and A. Ya. Vul′, J. Phys. Chem. Solids, 63, 1993–2001 (2002).

  27. E. D. Obraztsova, M. Fujii, S. Hayashi, V. L. Kuznetsov, and Y. V. Butenko, Carbon, 36, 821–826 (1998).

    Article  Google Scholar 

  28. M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, Appl. Phys. Lett., 67, 694–696 (1995).

    Article  ADS  Google Scholar 

  29. M. Mermoux, S. Chang, H. A. Girard, and J.-C. Arnault, Diamond Relat. Mater., 87, 248–260 (2018).

    Article  ADS  Google Scholar 

  30. S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill, and J. L. Peng, Chem. Phys. Lett., 332, 93–97 (2000).

    Article  ADS  Google Scholar 

  31. A. C. Ferrari and J. Robertson, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 14095–14107 (2000).

  32. A. C. Ferrari and J. Robertson, Phys. Rev. B: Condens. Matter Mater. Phys., 64, 075414 (1–13) (2001).

  33. A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc. London, Ser. A, 362, 2477–2512 (2004).

  34. S. Prawer and R. J. Nemanich, Philos. Trans. R. Soc. London, Ser. A, 362, 2537–2565 (2004).

  35. J. O. Orwa, K. W. Nugent, D. N. Jamieson, and S. Prawer, Phys. Rev. B: Condens. Matter Mater. Phys., 62, 5461–5472 (2000).

  36. V. Mochalin, S. Osswald, and Y. Gogotsi, Chem. Mater., 21, 273–279 (2009).

    Article  Google Scholar 

  37. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook, Springer, Berlin (2001).

    Book  Google Scholar 

  38. J. Cebik, J. K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi, and S. Osswald, Nanotechnology, 24, 205703 (1–10) (2013).

    Google Scholar 

  39. B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, P. C. Eklund, K. Oshida, and M. Endo, Phys. Rev. B: Condens. Matter Mater. Phys., 62, 11209–11218 (2000).

  40. S. Tomita, T. Sakurai, H. Ohta, M. Fujii, and S. Hayashi, J. Chem. Phys., 114, 7477–7482 (2001).

    Google Scholar 

  41. A. M. Panich, A. I. Shames, N. A. Sergeev, M. Olszewski, J. K. McDonough, V. N. Mochalin, and Y. Gogotsi, J. Phys.: Condens. Matter, 25, 245303 (1–8) (2013).

  42. J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, New York (1985).

    Google Scholar 

  43. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, 2nd edn., Methuen & Co., London (1958), 425 pp.

  44. T. Petit and L. Puskar, Diamond Relat. Mater., 89, 52–66 (2018).

    Article  ADS  Google Scholar 

  45. V. Yu. Osipov and N. M. Romanov, Opt. Zh., 84, No. 5, 3–7 (2017).

    Google Scholar 

  46. V. Yu. Osipov, N. M. Romanov, F. M. Shakhov, and K. Takai, Opt. Zh., 85, No. 3, 3–11 (2018).

    Google Scholar 

  47. S. Ghodbane, T. Haensel, Y. Coffinier, S. Szunerits, D. Steinmuller-Nethl, R. Boukherroub, S. I. U. Ahmed, and J. A. Schaefer, Langmuir, 26, 18798–18805 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gusakov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 1, pp. 33–42, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusakov, G.A., Lugovski, A.A., Lugovski, A.P. et al. Surface Modification of Ultradisperse Diamonds by Vacuum Heat Treatment. J Appl Spectrosc 87, 26–34 (2020). https://doi.org/10.1007/s10812-020-00958-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00958-8

Keywords

Navigation