Skip to main content
Log in

Spatially Localized Structures in Lattice Dynamical Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We investigate stationary, spatially localized patterns in lattice dynamical systems that exhibit bistability. The profiles associated with these patterns have a long plateau where the pattern resembles one of the bistable states, while the profile is close to the second bistable state outside this plateau. We show that the existence branches of such patterns generically form either an infinite stack of closed loops (isolas) or intertwined s-shaped curves (snaking). We then use bifurcation theory near the anti-continuum limit, where the coupling between edges in the lattice vanishes, to prove existence of isolas and snaking in a bistable discrete real Ginzburg–Landau equation. We also provide numerical evidence for the existence of snaking diagrams for planar localized patches on square and hexagonal lattices and outline a strategy to analyse them rigorously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aougab, T., Beck, M., Carter, P., Desai, S., Sandstede, B., Stadt, M., Wheeler, A.: Isolas versus snaking of localized rolls. J. Dyn. Differ. Equ. 31, 1199–1222 (2019)

    Article  MathSciNet  Google Scholar 

  • Avitabile, D., Lloyd, D.J.B., Burke, J., Knobloch, E., Sandstede, B.: To snake or not to snake in the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 9, 704–733 (2010)

    Article  MathSciNet  Google Scholar 

  • Beck, M., Knobloch, J., Lloyd, D., Sandstede, B., Wagenknecht, T.: Snakes, ladders, and isolas of localized patterns. SIAM J. Math. Anal. 41, 936–972 (2009)

    Article  MathSciNet  Google Scholar 

  • Beyn, W.-J., Kleinkauf, J.-M.: The numerical computation of homoclinic orbits for maps. SIAM J. Numer. Anal. 34, 1207–1236 (1997)

    Article  MathSciNet  Google Scholar 

  • Bramburger, J.J., Sandstede, B.: Localized patterns in planar bistable lattice systems. Preprint (2019)

  • Burke, J., Knobloch, E.: Localized states in the generalized Swift–Hohenberg equation. Phys. Rev. E 73, 056211 (2006)

    Article  MathSciNet  Google Scholar 

  • Burke, J., Knobloch, E.: Snakes and ladders: localized states in the Swift–Hohenberg equation. Phys. Rev. A 360, 681–688 (2007)

    MathSciNet  MATH  Google Scholar 

  • Carretero-González, R., Talley, J.D., Chong, C., Malomed, B.A.: Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation. Physica D 216, 77–89 (2006)

    Article  MathSciNet  Google Scholar 

  • Chapman, S.J., Kozyreff, G.: Exponential asymptotics of localised patterns and snaking bifurcation diagrams. Physica D 238, 319–354 (2009)

    Article  MathSciNet  Google Scholar 

  • Chong, C., Carretero-González, R., Malomed, B.A., Kevrekidis, P.G.: Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices. Physica D 238, 126–136 (2009)

    Article  MathSciNet  Google Scholar 

  • Chong, C., Pelinovsky, D.E.: Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete Cont. Dyn. Syst. Ser. S 4, 1019–1031 (2011)

    MATH  Google Scholar 

  • Chong, C., Pelinovsky, D.E., Schneider, : On the validity of the variational approximation in discrete nonlinear Schrödinger equations. Physica D 241, 115–124 (2012)

    Article  MathSciNet  Google Scholar 

  • Coullet, P., Riera, C., Tresser, C.: Stable static localized structures in one dimension. Phys. Rev. Lett. 84, 3069–3072 (2000)

    Article  Google Scholar 

  • Dawes, J.H.P.: The emergence of a coherent structure for coherent structures: localized states in nonlinear systems. Philos. Trans. R. Soc. Lond. Ser. A 368, 3519–3534 (2010)

    Article  MathSciNet  Google Scholar 

  • Groves, M., Lloyd, D., Stylianou, A.: Pattern formation on the free surface of a ferrofluid: spatial dynamics and homoclinic bifurcation. Physica D 350, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  • Fiedler, B.: Global pathfollowing of homoclinic orbits in two-parameter flows. Pitman Res. 352, 79–146 (1996)

    MATH  Google Scholar 

  • Fiedler, B., Scheurle, J.: Discretization of homoclinic orbits, rapid forcing and “invisible” chaos. Mem. Am. Math. Soc. 119 (1996)

  • Knobloch, E.: Spatial localization in dissipative systems. Ann. Rev. Condens. Matter Phys. 6, 325–359 (2015)

    Article  Google Scholar 

  • Knobloch, J., Vielitz, M., Wagenknecht, T.: Non-reversible perturbations of homoclinic snaking scenarios. Nonlinearity 25, 3469–3485 (2012)

    Article  MathSciNet  Google Scholar 

  • Kozyreff, G., Chapman, S.J.: Asymptotics of large bound states of localised structures. Phys. Rev. Lett. 97, 044502 (2006)

    Article  Google Scholar 

  • Kusdiantara, R., Susanto, H.: Homoclinic snaking in the discrete Swift–Hohenberg equation. Phys. Rev. E 96, 062214 (2017)

    Article  MathSciNet  Google Scholar 

  • Lloyd, D., O’Farrell, H.: On localised hotspots of an urban crime model. Physica D 253, 23–39 (2013)

    Article  MathSciNet  Google Scholar 

  • Lloyd, D.J.B., Sandstede, B., Avitabile, D., Champneys, A.R.: Localized hexagon patters of the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 1049–1100 (2008)

    Article  MathSciNet  Google Scholar 

  • Makrides, E., Sandstede, B.: Predicting the bifurcation structure of localized snaking patterns. Physica D 253, 23–39 (2013)

    Article  MathSciNet  Google Scholar 

  • Makrides, E., Sandstede, B.: Existence and stability of spatially localized patterns. J. Differ. Equ. 266, 1073–1120 (2019)

    Article  MathSciNet  Google Scholar 

  • McCullen, N., Wagenknecht, T.: Pattern formation on networks: from localized activity to Turing patterns. Sci. Rep. 6, 27397 (2016)

    Article  Google Scholar 

  • Meron, E.: Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012)

    Article  Google Scholar 

  • Palmer, K.J.: Existence of transversal homoclinic points in a degenerate case. Rocky Mt. J. Math. 20, 1099–1118 (1990)

    Article  MathSciNet  Google Scholar 

  • Papangelo, A., Grolet, A., Salles, L., Hoffman, N., Ciavarella, M.: Snaking bifurcations of self-excited oscillator chain with cyclic symmetry. Commun. Nonlinear Sci. Numer. Simul. 44, 642–647 (2006)

    MathSciNet  Google Scholar 

  • Pelinovsky, D.E.: Localization in Periodic Potentials. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  • Pomeau, Y.: Front motion, metastability, and subcritical bifurcations in hydrodynamics. Physica D 130, 73–104 (1999)

    Article  Google Scholar 

  • Sandstede, B., Xu, Y.: Snakes and isolas in non-reversible conservative systems. Dyn. Syst. 27, 317–329 (2012)

    Article  MathSciNet  Google Scholar 

  • Schecter, S.: Exchange lemmas 1: Deng’s lemma. J. Differ. Equ. 245, 392–410 (2008)

    Article  MathSciNet  Google Scholar 

  • Sheffer, E., Yizhaq, H., Shachak, M., Meron, E.: Mechanisms of vegetation-ring formation in water-limited systems. J. Theor. Biol. 273, 138–146 (2011)

    Article  MathSciNet  Google Scholar 

  • Taranenko, V.B., Ganne, I., Kuszelewicz, R.J., Weiss, C.O.: Patters and localized structures in bistable semiconductor resonators. Phys. Rev. A 61, 063818 (2000)

    Article  Google Scholar 

  • Taylor, C., Dawes, J.H.P.: Snaking and isolas of localised states in bistable discrete lattices. Phys. Lett. A 375, 14–22 (2010)

    Article  Google Scholar 

  • Tse, W.H., Ward, M.J.: Hotspot formation and dynamics for a continuum model of urban crime. Eur. J. Appl. Math. 27, 583–624 (2015)

    Article  MathSciNet  Google Scholar 

  • Vanag, V.K., Zhabotinksky, A.M., Epstein, I.R.: Pattern formation in the Belousov–Zhabotinksky reaction with photochemical global feedback. J. Phys. Chem. A 104, 11566–11577 (2000)

    Article  Google Scholar 

  • Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  • Woods, P.D., Champneys, A.R.: Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian Hopf bifurcation. Physica D 129, 147–170 (1999)

    Article  MathSciNet  Google Scholar 

  • Yulin, A.V., Champneys, A.R.: Discrete snaking: multiple cavity solitons in saturable media. SIAM J. Appl. Dyn. Syst. 9, 391–431 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Bramburger was supported by an NSERC PDF. Sandstede was partially supported by the NSF through Grant DMS-1714429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Bramburger.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramburger, J.J., Sandstede, B. Spatially Localized Structures in Lattice Dynamical Systems. J Nonlinear Sci 30, 603–644 (2020). https://doi.org/10.1007/s00332-019-09584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09584-x

Keywords

Mathematics Subject Classification

Navigation