Skip to main content
Log in

Response Solution to Ill-Posed Boussinesq Equation with Quasi-Periodic Forcing of Liouvillean Frequency

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of response solution (i.e., quasi-periodic solution with the same frequency as the forcing) for the quasi-periodically forced generalized ill-posed Boussinesq equation:

$$\begin{aligned} \begin{aligned} y_{tt}(t,x)=\mu y_{xxxx}+y_{xx}+\left( y^{3}+\varepsilon f(\omega t,x)\right) _{xx},\,\, x\in [0, \pi ],\,\, \mu >0, \end{aligned} \end{aligned}$$

subject to the hinged boundary conditions

$$\begin{aligned} \begin{aligned} y(t,0)=y(t,\pi )=y_{xx}(t,0)=y_{xx}(t,\pi )=0, \end{aligned} \end{aligned}$$

where \(\omega =(1,\alpha )\) with \(\alpha \) being any irrational numbers. The proof is based on a modified Kolmogorov–Arnold–Moser (KAM) iterative scheme. We will, at every step of KAM iteration, construct a symplectic transformation in a such way that the composition of these transformations reduce the original system to a new system which possesses zero as equilibrium. Note that we allow \(\alpha \) to be any irrational numbers, and thus the frequency \(\omega =(1,\alpha )\) is beyond Diophantine or Brjuno frequency, which we call as Liouvillean frequency. Moreover, the model under consideration is ill-posed and has complicated Hamiltonian structure. This makes homological equations appearing in KAM iteration are different from the ones in the classical infinite-dimensional KAM theory. The result obtained in this paper strengthens the existing results in the literature where the system is well-posed or the forcing frequency is assumed to be Diophantine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \({{\rm SL}}(2,\mathbb{R})\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Berti, M.: Nonlinear Oscillations of Hamiltonian PDEs. Progress in Nonlinear Differential Equations and Their Applications, vol. 74. Birkhäuser Boston Inc., Boston (2007)

    Book  MATH  Google Scholar 

  • Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 2(17), 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  • Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat. Math. Res. Notices (11):475ff (1994)

  • Bourgain, J.: Periodic solutions of nonlinear wave equations. Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996). Chicago Lectures in Mathematics, pp. 69–97. University of Chicago Press, Chicago (1999)

    Google Scholar 

  • Calsina, À., Solà-Morales, J., València, M.: Bounded solutions of some nonlinear elliptic equations in cylindrical domains. J. Dyn. Differ. Equ. 9(3), 343–372 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, H., de la Llave, R.: Stable manifolds to bounded solutions in possibly ill-posed pdes (2019a)

  • Cheng, H., de la Llave, R.: Time dependent center manifold in pdes (2019b)

  • Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Applied Mathematical Sciences, vol. 70. Springer, New York (1989)

    Book  MATH  Google Scholar 

  • Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. Panoramas et Synthèses [Panoramas and Syntheses], vol. 9. Société Mathématique de France, Paris (2000)

  • Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Craig, W., Wayne, C.E.: Periodic solutions of nonlinear Schrödinger equations and the Nash–Moser method. Hamiltonian Mechanics (Toruń, 1993). NATO Adv. Sci. Inst. Ser. B Phys., vol. 331, pp. 103–122. Plenum, New York (1994)

    Chapter  Google Scholar 

  • de la Llave, R.: A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities. J. Dyn. Differ. Equ. 21(3), 371–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • de la Llave, R., Sire, Y.: An A posteriori KAM theorem for whiskered tori in hamiltonian partial differential equations with applications to some Ill-posed equations. Arch. Ration. Mech. Anal. 231(2), 971–1044 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Fontich, E., de la Llave, R., Sire, Y.: Construction of invariant whiskered tori by a parameterization method. I. Maps and flows in finite dimensions. J. Differ. Equ. 246(8), 3136–3213 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  • Fontich, E., de la Llave, R., Sire, Y.: A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electron. Res. Announc. Math. Sci. 16, 9–22 (2009b)

    MathSciNet  MATH  Google Scholar 

  • Fontich, E., de la Llave, R., Sire, Y.: Construction of invariant whiskered tori by a parameterization method. Part II: Quasi-periodic and almost periodic breathers in coupled map lattices. J. Differ. Equ. 259(6), 2180–2279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford Mathematical Monographs. The Clarendon Press, New York (1985)

    MATH  Google Scholar 

  • Hale, J.K., Magalhães, L.T., Oliva, W.M.: Dynamics in Infinite Dimensions. Applied Mathematical Sciences, vol. 47, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results. J. Differ. Equ. 228(2), 530–579 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity. SIAM J. Appl. Dyn. Syst. 6(1), 142–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  • Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Kappeler, T., Pöschel, J.: KdV & KAM Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 45. Springer, Berlin (2003)

    Google Scholar 

  • Kirchgässner, K., Scheurle, J.: On the bounded solutions of a semilinear elliptic equation in a strip. J. Differ. Equ. 32(1), 119–148 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Kirchgässner, K.: Wave-solutions of reversible systems and applications. Dynamical Systems II (Gainesville, Fla., 1981), pp. 181–200. Academic Press, New York (1982)

    Google Scholar 

  • Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3), 22–37, 95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuksin, S.B.: KAM-theory for partial differential equations. In: First European Congress of Mathematics Vol. II (Paris, 1992), volume 120 of Progr. Math., pp. 123–157. Birkhäuser, Basel (1994)

  • Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143(1), 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, Z., You, J.: Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity. SIAM J. Math. Anal. 36(6), 1965–1990 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263(7), 3894–3927 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A.: Hamiltonian and Lagrangian Flows on Center Manifolds. Lecture Notes in Mathematics, vol. 1489. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  • Mielke, A.: Essential manifolds for an elliptic problem in an infinite strip. J. Differ. Equ. 110(2), 322–355 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Miyadera, I.: Nonlinear Semigroups. Translations of Mathematical Monographs, vol. 109. American Mathematical Society, Providence, RI (1992). (Translated from the 1977 Japanese original by Choong Yun Cho)

    Book  MATH  Google Scholar 

  • Milke, A., Zelik, S.: Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains. Uspekhi Mat. Nauk 57(4(346)), 119–150 (2002)

    Article  MathSciNet  Google Scholar 

  • Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23(1), 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  • Pöschel, J.: A lecture on the classical KAM theorem. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, pp. 707–732. American Mathematical Society, Providence, RI (2001)

  • Pazy, A.: Semigroups of operators in Banach spaces. Equadiff 82 (Würzburg, 1982). Lecture Notes in Mathematics, vol. 1017, pp. 508–524. Springer, Berlin (1983)

    Chapter  Google Scholar 

  • Poláčik, P., Valdebenito, D.A.: Existence of quasiperiodic solutions of elliptic equations on \(\mathbb{R}^{N+1}\) via center manifold and KAM theorems. J. Differ. Equ. 262(12), 6109–6164 (2017)

    Article  MATH  Google Scholar 

  • Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  • Shang, C.: Global attractor for the Ginzburg–Landau thermoviscoelastic systems with hinged boundary conditions. J. Math. Anal. Appl. 343(1), 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  • Shi, Y., Xu, J., Xindong, X.: On quasi-periodic solutions for a generalized Boussinesq equation. Nonlinear Anal. 105, 50–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, Y., Xu, J., Xindong, X., Jiang, S.: On the quasi-periodic solutions for generalized Boussinesq equation with higher order nonlinearity. Appl. Anal. 94(10), 1977–1996 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sell, G.R., You, Y.: Dynamics of Evolutionary Equations. Applied Mathematical Sciences, vol. 143. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Valls, C.: Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain. Comment. Math. Helv. 81(4), 783–800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Valls, C.: Stability of some solutions for elliptic equations on a cylindrical domain. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465(2109), 2647–2662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc. 369(6), 4251–4274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., You, J., Qiu, Q.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z 226(3), 375–387 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, X.: Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension. J. Differ. Equ. 195(1), 230–242 (2003)

    Article  MATH  Google Scholar 

  • Zehnder, E.: Lectures on dynamical systems. In: Hamiltonian vector fields and symplectic capacities, EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2010)

Download references

Acknowledgements

This paper was finished during the period when the authors Hongyu Cheng and Fenfen Wang visited Professor Rafael de la Llave at Georgia Institute of Technology. We would like to thank Professor Rafael de la Llave for warm-hearted helping and worthwhile suggestions. We would also like to thank the anonymous referees and the editors for their valuable and detailed comments and suggestions. This have helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Si.

Additional information

Communicated by Dr. Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Wang, H. Cheng and J. Si are supported by the National Natural Science Foundation of China (Grant Nos. 11971261, 11571201)

Appendix

Appendix

Lemma 19

(Lemma 7.3 in Liang and You 2005). For vector fields \(X_F\) and \(X_G\) defined on D(rs), if

$$\begin{aligned} \begin{aligned} \Vert X_F\Vert _{s,D(r,s)\times \mathcal {O}}\le \varepsilon ',\,\,\Vert X_G\Vert _{s,D(r,s)\times \mathcal {O}}\le \varepsilon '', \end{aligned} \end{aligned}$$

then, there exists a constant c such that

$$\begin{aligned} \begin{aligned} \Vert X_{\{F,G\}}\Vert _{\delta s,D(r-\sigma ,\delta s)\times \mathcal {O}}\le c\sigma ^{-1}\delta ^{-2}\varepsilon '\varepsilon ''. \end{aligned} \end{aligned}$$

Lemma 20

(Lemma 2.1 in Yuan 2003). Let \(a>0\) and \(p>\frac{d}{2}\). For \(w,z,q\in \ell _{a,p},\) let \(F(w,z,q)=(F_{\mathbf {n}})_{\mathbf {n} \in \mathbb {Z}^{d}}\) be a sequence where

$$\begin{aligned} \begin{aligned} F_{\mathbf {n}}=\sum _{\mathbf {i}-\mathbf {j}+\mathbf {l}=\mathbf {n}}w_{\mathbf {i}}\bar{z}_{\mathbf {j}}q_{\mathbf {l}}. \end{aligned} \end{aligned}$$

Then \(\Vert F(w,z,q)\Vert _{a,p}\le c\Vert w\Vert _{a,p}\Vert z\Vert _{a,p}\Vert q\Vert _{a,p}\) for a constant c depending only on a and p.

We now present the proof for Lemma 8.

Proof

The proof of Lemma 8 is similar to Lemma 3.2 in Wang et al. (2017). However, we still present the details in order to make our paper easier to read. It suffices to consider the case that \(\big |\langle k,\omega \rangle + \langle l,\Omega \rangle |\le 1\), since the result is obvious when \(\big |\langle k,\omega \rangle + \langle l,\Omega \rangle |>1\).

Case 1.\(\overline{Q}_{n}\le Q_{n}^{\mathbb {A}}\). In this case, we know that \(\frac{\overline{Q}_{n}}{Q_{n}^{\tau }}\le \overline{Q}_{n}^{\frac{3}{\mathbb {A}}} \le Q_{n}^{3}\), so \(\widetilde{K}=\left[ \overline{Q}_{n}^{\frac{3}{\mathbb {A}}}\right] \). It follows from (4.6) and \(|k|<\widetilde{K}\le Q_{n}^{3}\) that

$$\begin{aligned} \begin{aligned} \big |\langle k,\omega \rangle + \langle l,\Omega \rangle | \ge \frac{\gamma }{(|k|+|l|)^{\tau }} \ge \frac{c_2(\tau )\gamma }{Q_{n}^{3\tau }}. \end{aligned} \end{aligned}$$

Case 2.\(\overline{Q}_{n}> Q_{n}^{\mathbb {A}}\ge 9Q_{n}^{\tau +1}\). In this case, we have \(\frac{\overline{Q}_{n}}{Q_{n}^{\tau }}>\overline{Q}_{n}^{\frac{3}{\mathbb {A}}}\), thus \(\widetilde{K}=\left[ \frac{\overline{Q}_{n}}{Q_{n}^{\tau }}\right] \). For any \(|k|<\widetilde{K}\), we decompose it as

$$\begin{aligned} \begin{aligned} k=(k_{1},k_{2})=(\tilde{k}_{1},\tilde{k}_{2})+m(P_{n},-Q_{n}), \end{aligned} \end{aligned}$$

where \(|\tilde{k}_{2}|<Q_{n}.\) Since

$$\begin{aligned} \begin{aligned} |mQ_{n}|-|\tilde{k}_{2}|\le |\tilde{k}_{2}-mQ_{n}|=|k_{2}|\le |k|< \widetilde{K}=\left[ \frac{\overline{Q}_{n}}{Q_{n}^{\tau }}\right] , \end{aligned} \end{aligned}$$

we get

$$\begin{aligned} \begin{aligned} |mQ_{n}|<\frac{\overline{Q}_{n}}{Q_{n}^{\tau }}+Q_{n}, \end{aligned} \end{aligned}$$

which means

$$\begin{aligned} \begin{aligned} |m|<\frac{\overline{Q}_{n}}{Q_{n}^{\tau +1}}+1. \end{aligned} \end{aligned}$$

Thus

$$\begin{aligned} \begin{aligned} 1\ge \big |\langle k,\omega \rangle + \langle l,\Omega \rangle |&=\big |(\tilde{k}_{1}+\tilde{k}_{2}\alpha ) +m(P_{n}-Q_{n}\alpha )\pm \langle l,\Omega \rangle |\\&\ge |\tilde{k}_{1}|-\alpha |\tilde{k}_{2}| -|m||P_{n}-Q_{n}\alpha |- |l||\Omega |. \end{aligned} \end{aligned}$$

This implies that

$$\begin{aligned} \begin{aligned} |\tilde{k}_{1}|&\le 1+|\tilde{k}_{2}|+|m||(P_{n}-Q_{n}\alpha )|+2|\Omega |\\&\le 1+Q_{n}+(\frac{\overline{Q}_{n}}{Q_{n}^{\tau +1}}+1)\frac{1}{\overline{Q}_{n}}+4\\&\le 1+Q_{n}+\frac{1}{Q_{n}^{\tau +1}}+\frac{1}{\overline{Q}_{n}}+4\\&\le 7+Q_{n}. \end{aligned}. \end{aligned}$$

Therefore

$$\begin{aligned} \begin{aligned} |\tilde{k}|=|\tilde{k}_{1}|+|\tilde{k}_{2}| \le 7+2Q_{n}\le 9Q_{n}\le \left[ \frac{\overline{Q}_{n}}{Q_{n}^{\tau }}\right] =\widetilde{K}. \end{aligned} \end{aligned}$$

It follows that

$$\begin{aligned} \begin{aligned} \big |\langle \tilde{k},\omega \rangle +\langle l,\Omega \rangle |\ge \frac{\gamma }{(|\tilde{k}|+|l|)^{\tau }}\ge \frac{\gamma }{(9Q_{n}+2)^{\tau }} \ge \frac{\gamma }{11^{\tau }Q_{n}^{\tau }}. \end{aligned} \end{aligned}$$

In conclusion, we get

$$\begin{aligned} \begin{aligned} \big |\langle k,\omega \rangle + \langle l,\Omega \rangle |&=\big |\langle \tilde{k},\omega \rangle +\langle l,\Omega \rangle +m(P_{n}-Q_{n}\alpha )|\\&\ge \big |\langle \tilde{k},\omega \rangle + \langle l,\Omega \rangle |-|m(P_{n}-Q_{n}\alpha )|\\&\ge \frac{\gamma }{11^{\tau }Q_{n}^{\tau }}-(\frac{\overline{Q}_{n}}{Q_{n}^{\tau +1}}+1)\frac{1}{\overline{Q}_{n}}\\&\ge \frac{\gamma }{11^{\tau }Q_{n}^{\tau }}-\frac{2}{Q_{n}^{\tau +1}}\\&\ge c_2(\tau )\gamma Q_{n}^{-\tau }. \end{aligned} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cheng, H. & Si, J. Response Solution to Ill-Posed Boussinesq Equation with Quasi-Periodic Forcing of Liouvillean Frequency. J Nonlinear Sci 30, 657–710 (2020). https://doi.org/10.1007/s00332-019-09587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09587-8

Keywords

Mathematics Subject Classification

Navigation