Skip to main content
Log in

Production of Aluminide Layers on AISI 304 Stainless Steel at Low Temperatures Using the Slurry Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Intermetallic compounds, such as iron aluminides exhibit excellent oxidation and corrosion resistance, as well as metallurgical bonding with excellent adhesion to the substrate. In this work, aluminizing treatments were carried out using the dipping into slurry process to produce iron aluminide coatings on stainless steel substrates. In this process, AISI 304 stainless steel samples were immersed in a slurry consisting of polyvinyl butyral, ethyl alcohol and a powder composed of Al, AlCl3 and Al2O3, dried and then placed in sealed crucibles without further protection. These samples were treated at temperatures of 500 and 650 °C for 2, 4, 6 and 8 h and then air-cooled. Flat and homogeneous layers were obtained over the substrate with increased thickness observed with increasing temperature and treatment time. Considering that the traditional treatments of aluminization by the pack process are carried out at temperatures close to 900 °C and use larger amounts of material, the low temperature treatments used in this work offer potential cost savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.A. Ravi, T.K. Nguyen, and J.C. Nava, Aluminizing of Steel to Improve High Temperature Corrosion Resistance, Thermochemical Surface Engineering of Steels, E.J. Mittemeijer, M.A. Somers, Eds., Woodhead Publishing, Sawston, 2015, p 751–767. https://doi.org/10.1533/9780857096524.5.751.

    Chapter  Google Scholar 

  2. X. Xiang, X. Wang, G. Zhang, T. Tang, and X. Lai, Preparation Technique and Alloying Effect of Aluminide Coatings as Tritium Permeation Barriers: A Review, Int. J. Hydrog. Energy, 2015, 40, p 3697–3707. https://doi.org/10.1016/j.ijhydene.2015.01.052

    Article  CAS  Google Scholar 

  3. Z. Zhan, Z. Liu, J. Liu, L. Li, Z. Li, and P. Liao, Microstructure and High-Temperature Corrosion Behaviors of Aluminide Coatings by Low-Temperature Pack Aluminizing Process, Appl. Surf. Sci., 2010, 256, p 3874–3879. https://doi.org/10.1016/j.apsusc.2010.01.043

    Article  CAS  Google Scholar 

  4. Q. Xue, C.Y. Sun, J.Y. Yu, L. Huang, J. Wei, and J. Zhang, Microstructure Evolution of a Zn-Al Coating Co-deposited on Low-Carbon Steel by Pack Cementation, J. Alloys Compd., 2017, 699, p 1012–1021. https://doi.org/10.1016/j.jallcom.2016.12.291

    Article  CAS  Google Scholar 

  5. H. Sidhom, T. Amadou, H. Sahlaoui, and C. Braham, Quantitative Evaluation of Aged AISI, 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods, Metall. Mater. Trans. A, 2007, 38, p 1269–1280. https://doi.org/10.1007/s11661-007-9114-9

    Article  CAS  Google Scholar 

  6. S. Majumbar, B. Paul, V. Kain, and G.K. Dey, Formation of Al2O3/Fe-Al Layers on SS 316 Surface by Pack Aluminizing and Heat Treatment, Mater. Chem. Phys., 2017, 190, p 31–37. https://doi.org/10.1016/j.matchemphys.2017.01.002

    Article  CAS  Google Scholar 

  7. S. Guo, Z.B. Wang, L.M. Wang, and K. Lu, Lower-Temperature Aluminizing Behaviors of a Ferritic–Martensitic Steel Processed by Means of Surface Mechanical Attrition Treatment, Surf. Coat. Technol., 2014, 258, p 329–336. https://doi.org/10.1016/j.surfcoat.2014.09.005

    Article  CAS  Google Scholar 

  8. R. Sakidja, J.H. Perepezko, and P. Calhoun, Synthesis, Thermodynamic Stability and Diffusion Mechanism of Al5Fe2-Based Coatings, Oxid. Met., 2014, 81, p 167–177. https://doi.org/10.1007/s11085-013-9463-2

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Wang, H. Hu, J. Meng, and X. Zhao, Effect of Y2O3 Content in the Pack Mixtures on the Cyclic-Oxidation of Y2O3-Modified Low Temperature Aluminide Coatings on 309 Stainless Steel, Vacuum, 2018, 158, p 101–112. https://doi.org/10.1016/j.vacuum.2018.09.047

    Article  CAS  Google Scholar 

  10. E.A. Basuki, D.S. Hajar, F. Rahman, and D. Prajitno, Cyclic Oxidation of Aluminide Coated Two Phase α2-Ti3Al/γ-TiAl Alloys at 1000 °C, Procedia Chem., 2015, 16, p 47–52. https://doi.org/10.1016/j.proche.2015.12.018

    Article  CAS  Google Scholar 

  11. A. Agüero, M. Gutiérrez, R. Muelas, and K. Spiradek-Hahn, Overview of Steam Oxidation Behavior of Al Protective Oxide Precursor Coatings on P92, Surf. Eng., 2016, 34, p 30–39. https://doi.org/10.1080/02670844.2016.1155691

    Article  CAS  Google Scholar 

  12. C. Boulesteix, V. Kolarik, and F. Pedraza, Steam Oxidation of Aluminide Coatings under High Pressure and for Long Exposures, Corros. Sci., 2018, 144, p 328–338. https://doi.org/10.1016/j.corsci.2018.08.053

    Article  CAS  Google Scholar 

  13. J. Lu, Y. Dang, J. Huang, Y. Zhou, Z. Yang, J. Yan, Y. Yuan, and Y. Gu, Preparation and Characterization of Slurry Aluminide Coating on Super304H Boiler Tube in Combination with Heat-Treatment Process, Surf. Coat. Technol., 2019, 370, p 97–105. https://doi.org/10.1016/j.surfcoat.2019.04.061

    Article  CAS  Google Scholar 

  14. X. Montero, I. Demler, V. Kuznetsov, and M.C. Galetz, Factors Governing Slurry Aluminization of Steels, Surf. Coat. Technol., 2017, 309, p 179–186. https://doi.org/10.1016/j.surfcoat.2016.11.067

    Article  CAS  Google Scholar 

  15. Y. Sun, J. Dong, P. Zhao, and B. Dou, Formation and Phase Transformation of Aluminide Coating Prepared by Low-Temperature Aluminizing Process, Surf. Coat. Technol., 2017, 330, p 234–240. https://doi.org/10.1016/j.surfcoat.2017.10.025

    Article  CAS  Google Scholar 

  16. S.A. Makhlouf, T. Nakamura, and M. Shiga, Structure and Magnetic Properties of FeAl1−xRhx Alloys, J. Magn. Magn. Mater., 1994, 135, p 257–264. https://doi.org/10.1016/0304-8853(94)90355-7

    Article  CAS  Google Scholar 

  17. X. Montero, M.C. Galetz, and M. Schütze, A Novel Type of Environmentally Friendly Slurry Coatings, JOM, 2015, 67, p 77–86. https://doi.org/10.1007/s11837-014-1239-x

    Article  CAS  Google Scholar 

  18. F. Abe and T. Tanabe, Change in Lattice Spacing of Nickel by Dissolved Chromium and Tungsten, Z. Metall., 1958, 76, p 420–425

    Google Scholar 

  19. R. Kohlhaas, P. Dunner, and N. Schmitz-Pranghe, Uber die temperaturabhangigkeit der gitterparameter von eisen, kobalt und nickel im bereich hoher temperature, Z. Angew. Phys., 1967, 23, p 245–249

    CAS  Google Scholar 

  20. X. Montero, M.C. Galetz, and M. Schütze, Low-Activity Aluminide Coatings for Superalloys Using a Slurry Process Free of Halide Activators and Chromates, Surf. Coat. Technol., 2013, 222, p 9–14. https://doi.org/10.1016/j.surfcoat.2013.01.033

    Article  CAS  Google Scholar 

  21. L.B. Bates, Y.Q. Wang, Y. Zhang, and B.A. Pint, Formation and Oxidation Performance of Low-Temperature Pack Aluminide Coatings on Ferritic–Martensitic Steels, Surf. Coat. Technol., 2009, 204, p 766–770. https://doi.org/10.1016/j.surfcoat.2009.09.063

    Article  CAS  Google Scholar 

  22. Z.D. Xiang and P.K. Datta, Kinetics of Low-Temperature Pack Aluminide Coating Formation on Alloy Steels, Metall. Mater. Trans. A, 2006, 37, p 3359–3365. https://doi.org/10.1007/BF02586170

    Article  Google Scholar 

  23. U. Sen, Kinetics of Titanium Nitride Coatings Deposited by Thermo-Reactive Deposition Technique, Vacuum, 2004, 75, p 339–345. https://doi.org/10.1016/j.vacuum.2004.04.003

    Article  CAS  Google Scholar 

  24. Y. Kayali, I. Güneş, and S. Ulu, Diffusion Kinetics of Borided AISI, 52100 and AISI, 440C Steels, Vacuum, 2012, 86, p 1428–1434. https://doi.org/10.1016/j.vacuum.2012.03.030

    Article  CAS  Google Scholar 

  25. S. Sen, U. Sen, and C. Bindal, An Approach to Kinetic Study of Borided Steels, Surf. Coat. Technol., 2005, 191, p 274–285. https://doi.org/10.1016/j.surfcoat.2004.03.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. The authors would also like to thank the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Finance code 305.294/2015-6 and University of São Paulo (USP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Magalhães Triani.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to JMEP selected from presentations at the 30th Heat Treating Society Conference and Exposition held October 15-17, 2019, in Detroit, Michigan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triani, R.M., Gomes, L.F.A., Aureliano, R.J.T. et al. Production of Aluminide Layers on AISI 304 Stainless Steel at Low Temperatures Using the Slurry Process. J. of Materi Eng and Perform 29, 3568–3574 (2020). https://doi.org/10.1007/s11665-020-04748-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04748-3

Keywords

Navigation