Issue 15, 2020

Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte

Abstract

The wide application of lithium metal batteries (LMBs) is greatly limited by the notorious side reactions and dendrite growth due to the highly reactive nature of lithium metal paired with the traditional liquid electrolytes. Herein, we report a synergetic strategy by combining ex situ chemical pretreatment on lithium metal anodes (LMAs) and in situ cationic polymerization of DOL to tackle these issues. LiDFOB is unprecedentedly employed as the initiator to launch the in situ fabrication of poly-DOL gel polymer electrolytes (GPEs), resulting in integrated ionic connections between the electrodes and electrolyte. Furthermore, robust and compatible interfaces are successfully constructed via pretreatment of LMAs and establishment of a LiDFOB–LiTFSI dual-salt system in quasi-solid lithium metal batteries (QSLMBs). Consequently, both the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) containing N- , F- , and B-rich inorganic components are formed on the anode and cathode. The novel poly-DOL GPE exhibits excellent compatibility with various intercalating cathodes, such as LiFePO4, LiMn2O4 and LiCoO2. This work provides a facile and accessible approach to manufacture qualified LMBs with improved safety and elongated lifetime.

Graphical abstract: Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2020
Accepted
17 Mar 2020
First published
01 Apr 2020

J. Mater. Chem. A, 2020,8, 7197-7204

Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte

Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv, F. Kang, Q. Wang and B. Li, J. Mater. Chem. A, 2020, 8, 7197 DOI: 10.1039/D0TA02148B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements