Skip to main content
Log in

Conjugate Phase Change Heat Transfer in an Inclined Compound Cavity Partially Filled with a Porous Medium: A Deformed Mesh Approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, the melting process of a PCM inside an inclined compound enclosure partially filled with a porous medium is theoretically addressed using a novel deformed mesh method. The sub-domain area of the compound enclosure is made of a porous layer and clear region. The right wall of the enclosure is adjacent to the clear region and is subject to a constant temperature of Tc. The left wall, which is connected to the porous layer, is thick and thermally conductive. The thick wall is partially subject to the hot temperature of Th. The remaining borders of the enclosure are well insulated. The governing equations for flow and heat transfer, including the phase change effects and conjugate heat transfer at the thick wall, are introduced and transformed into a non-dimensional form. A deformed grid method is utilized to track the phase change front in the solid and liquid regions. The melting front movement is controlled by the Stefan condition. The finite element method, along with Arbitrary Eulerian–Lagrangian (ALE) moving grid technique, is employed to solve the non-dimensional governing equations. The modeling approach and the accuracy of the utilized numerical approach are verified by comparison of the results with several experimental and numerical studies, available in the literature. The effect of conjugate wall thickness, inclination angle, and the porous layer thickness on the phase change heat transfer of PCM is investigated. The outcomes show that the rates of melting and heat transfer are enhanced as the thickness of the porous layer increases. The melting rate is the highest when the inclination angle of the enclosure is 45°. An increase in the wall thickness improves the melting rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area

A s,i :

Scaled absolute tolerance for degrees of freedom i

C p :

Specific heat capacity

d :

Wall length

Da :

Darcy number

E Y :

Estimate of the local error (absolute error)

g :

Gravitational acceleration

k :

Thermal conductivity

L :

Cavity length

M :

Number of fields

N j :

Number of degrees of freedom in a field

Pr :

Prandtl number

R :

Relative tolerance

Ra :

Rayleigh number

s :

Porous media length

Ste :

Stefen number

t :

Dimensional time

T :

Dimensional temperature

u, v :

Components of dimensional velocity along x and y directions

U, V :

Components of non-dimensional velocity along x and y velocity

x, y :

Dimensional cartesian coordinates

X, Y :

Non-dimensional cartesian coordinatess

Y i :

Scaled solution vector

α :

Thermal diffusivity

β :

Volume expansion coefficient

γ :

Inclination angle

ε :

Porosity

ζ :

Basis function

θ :

Dimensionless temperature

ν f :

Kinematic viscositys

ρ :

Density

τ :

Dimensionless time

c :

Cold

h :

Hot

i, j :

Degrees of freedom, field number

l :

Liquid

m :

Melt

p :

Property of metal foam

s :

Solid

w :

Wall

References

  • Al-Jethelah, M.S., Tasnim, S.H., Mahmud, S., Dutta, A.: Melting of nano-phase change material inside a porous enclosure. Int. J. Heat Mass Transf. 102, 773–787 (2016)

    Google Scholar 

  • Alsabery, A., Ismael, M., Chamkha, A., Hashim, I.: Numerical investigation of mixed convection and entropy generation in a wavy-walled cavity filled with nanofluid and involving a rotating cylinder. Entropy 20, 664 (2018a)

    Google Scholar 

  • Alsabery, A., Sheremet, M., Chamkha, A., Hashim, I.: Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int. J. Mech. Sci. 136, 200–219 (2018b)

    Google Scholar 

  • Alsabery, A., Sheremet, M., Chamkha, A., Hashim, I.: MHD convective heat transfer in a discretely heated square cavity with conductive inner block using two-phase nanofluid model. Sci. Rep. 8, 7410 (2018c)

    Google Scholar 

  • Alsabery, A., Ismael, M., Chamkha, A., Hashim, I.: Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J. Therm. Anal. Calorim. 135, 729–750 (2019a)

    Google Scholar 

  • Alsabery, A., Sheremet, M.A., Chamkha, A., Hashim, I.: Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int. J. Mech. Sci. 150, 637–655 (2019b)

    Google Scholar 

  • Alsabery, A.I., Mohebbi, R., Chamkha, A.J., Hashim, I.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019c)

    Google Scholar 

  • Basak, T., Roy, S., Paul, T., Pop, I.: Natural convection in a square cavity filled with a porous medium: effects of various thermal boundary conditions. Int. J. Heat Mass Transf. 49, 1430–1441 (2006)

    Google Scholar 

  • Bechiri, M., Mansouri, K.: Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube. Int. J. Therm. Sci. 135, 235–246 (2019)

    Google Scholar 

  • Bertrand, O., Binet, B., Combeau, H., Couturier, S., Delannoy, Y., Gobin, D., Lacroix, M., Le Quéré, P., Médale, M., Mencinger, J.: Melting driven by natural convection a comparison exercise: first results. Int. J. Therm. Sci. 38, 5–26 (1999)

    Google Scholar 

  • Bondareva, N., Sheremet, M.: Numerical investigation of the two-dimensional natural convection inside the system based on phase change material with a source of volumetric heat generation. Thermophys. Aeromech. 25, 525–537 (2018)

    Google Scholar 

  • Bondareva, N.S., Buonomo, B., Manca, O., Sheremet, M.A.: Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence. Int. J. Heat Mass Transf. 135, 1063–1072 (2019)

    Google Scholar 

  • Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  • Chamkha, A., Doostanidezfuli, A., Izadpanahi, E., Ghalambaz, M.: Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv. Powder Technol. 28, 385–397 (2017)

    Google Scholar 

  • Chamkha, A., Selimefendigil, F.: MHD free convection and entropy generation in a corrugated cavity filled with a porous medium saturated with nanofluids. Entropy 20, 846 (2018)

    Google Scholar 

  • Dinesh, B.V.S., Bhattacharya, A.: Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems. Int. J. Heat Mass Transf. 134, 866–883 (2019)

    Google Scholar 

  • Doostani, A., Ghalambaz, M., Chamkha, A.J.: MHD natural convection phase-change heat transfer in a cavity: analysis of the magnetic field effect. J. Braz. Soc. Mech. Sci. Eng. 39, 2831–2846 (2017)

    Google Scholar 

  • Elsayed, A.O.: Numerical investigation on PCM melting in triangular cylinders. Alex. Eng. J. 57, 2819–2828 (2018)

    Google Scholar 

  • Faghani, M., Hosseini, M.J., Bahrampoury, R.: Numerical simulation of melting between two elliptical cylinders. Alex. Eng. J. 57, 577–586 (2018)

    Google Scholar 

  • Fan, L., Khodadadi, J.M.: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew. Sustain. Energy Rev. 15, 24–46 (2011)

    Google Scholar 

  • Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manage. 45, 1597–1615 (2004)

    Google Scholar 

  • Gau, C., Viskanta, R.: Melting and solidification of a pure metal on a vertical wall. J. Heat Transf. 108, 174–181 (1986)

    Google Scholar 

  • Ghalambaz, M., Sabour, M., Pop, I.: Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects. Eng. Sci. Technol. Int. J. 19, 1244–1253 (2016)

    Google Scholar 

  • Ghalambaz, M., Doostani, A., Izadpanahi, E., Chamkha, A.: Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J. Taiwan Inst. Chem. Eng. 72, 104–115 (2017a)

    Google Scholar 

  • Ghalambaz, M., Doostanidezfuli, A., Zargartalebi, H., Chamkha, A.J.: MHD phase change heat transfer in an inclined enclosure: effect of a magnetic field and cavity inclination. Numer. Heat Transf. Part A Appl. 71, 91–109 (2017b)

    Google Scholar 

  • Hayat, T., Khan, M.I., Waqas, M., Alsaedi, A., Farooq, M.: Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput. Methods Appl. Mech. Eng. 315, 1011–1024 (2017)

    Google Scholar 

  • Hlimi, M., Hamdaoui, S., Mahdaoui, M., Kousksou, T., Ait Msaad, A., Jamil, A.E., Bouardi, A.: Melting inside a horizontal cylindrical capsule. Case Stud. Therm. Eng. 8, 359–369 (2016)

    Google Scholar 

  • Hu, J.-T., Mei, S.-J., Liu, D., Zhao, F.-Y., Wang, H.-Q.: Buoyancy driven double diffusive moisture convection inside the fluid-porous-solid sandwiched building enclosure containing internal heating sources. Int. J. Heat Mass Transf. 123, 600–615 (2018)

    Google Scholar 

  • Ismael, M.A.: Double-diffusive mixed convection in a composite porous enclosure with arc-shaped moving wall: tortuosity effect. J. Porous Med. 21(4), 343–362 (2018)

    Google Scholar 

  • Ismael, M.A., Ghalib, H.S.: Double diffusive natural convection in a partially layered cavity with inner solid conductive body. Sci Iran 25, 2643–2659 (2018)

    Google Scholar 

  • Jourabian, M., Darzi, A.A.R., Toghraie, D., Akbari, O.A.: Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method. Phys. A 509, 316–335 (2018a)

    Google Scholar 

  • Jourabian, M., Farhadi, M.R., Darzi, A.: Constrained ice melting around one cylinder in horizontal cavity accelerated using three heat transfer enhancement techniques. Int. J. Therm. Sci. 125, 231–247 (2018b)

    Google Scholar 

  • Kashani, S., Ranjbar, A., Abdollahzadeh, M., Sebti, S.: Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat Mass Transf. 48, 1155–1166 (2012)

    Google Scholar 

  • Khodadadi, J., Hosseinizadeh, S.: Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 34, 534–543 (2007)

    Google Scholar 

  • Kumar, L., Manjunath, B., Patel, R., Markandeya, S., Agrawal, R., Agrawal, A., Kashyap, Y., Sarkar, P., Sinha, A., Iyer, K.: Experimental investigations on melting of lead in a cuboid with constant heat flux boundary condition using thermal neutron radiography. Int. J. Therm. Sci. 61, 15–27 (2012)

    Google Scholar 

  • Mehryan, S., Ghalambaz, M., Izadi, M.: Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J. Therm. Anal. Calorim. 135, 1047–1067 (2019a)

    Google Scholar 

  • Mehryan, S., Izadi, M., Namazian, Z., Chamkha, A.J.: Natural convection of multi-walled carbon nanotube–Fe 3 O 4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. J. Therm. Anal. Calorim. 138, 1541–1555 (2019b)

    Google Scholar 

  • Moore, P.K., Petzold, L.R.: A stepsize control strategy for stiff systems of ordinary differential equations. Appl. Numer. Math. 15, 449–463 (1994)

    Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, Berlin (2006)

    Google Scholar 

  • Pop, I., Ghalambaz, M., Sheremet, M.: Free convection in a square porous cavity filled with a nanofluid using thermal non equilibrium and Buongiorno models. Int. J. Numer. Meth. Heat Fluid Flow 26, 671–693 (2016)

    Google Scholar 

  • Rakotondrandisa, A., Danaila, I., Danaila, L.: Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting. Int. J. Heat Fluid Flow 76, 57–71 (2019)

    Google Scholar 

  • Reddy, J.N.: An Introduction to the Finite Element Method. McGraw-Hill, New York (1993An)

    Google Scholar 

  • Sathiyamoorthy, M., Chamkha, A.J.: Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flow 22(5), 677–698 (2012)

    Google Scholar 

  • Sheikholeslami, M.: Numerical mosdeling of nano enhanced PCM solidification in an enclosure with metallic fin. J. Mol. Liq. 259, 424–438 (2018a)

    Google Scholar 

  • Sheikholeslami, M.: Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J. Taiwan Inst. Chem. Eng. 86, 25–41 (2018b)

    Google Scholar 

  • Sheikholeslami, M.: Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J. Mol. Liq. 263, 303–315 (2018c)

    Google Scholar 

  • Sheikholeslami, M.: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019a)

    Google Scholar 

  • Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019b)

    Google Scholar 

  • Sheikholeslami, M., Haq, R.-U., Shafee, A., Li, Z.: Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transf. 130, 1322–1342 (2019a)

    Google Scholar 

  • Sheikholeslami, M., Saleem, S., Shafee, A., Li, Z., Hayat, T., Alsaedi, A., Khan, M.I.: Mesoscopic investigation for alumina nanofluid heat transfer in permeable medium influenced by Lorentz forces. Comput. Methods Appl. Mech. Eng. 349, 839–858 (2019b)

    Google Scholar 

  • Sheikholeslami, M., Shamlooei, M., Moradi, R.: Fe3O4-Ethylene glycol nanofluid forced convection inside a porous enclosure in existence of coulomb force. J. Mol. Liq. 249, 429–437 (2018)

    Google Scholar 

  • Sheremet, M.A., Grosan, T., Pop, I.: Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transp. Porous Media 106, 595–610 (2015)

    Google Scholar 

  • Sheremet, M.A., Pop, I., Baytas, A.C.: Non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium. Int. J. Numer. Methods Heat Fluid Flow 29(8), 2524–2544 (2019)

    Google Scholar 

  • Sun, Q., Pop, I.: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int. J. Therm. Sci. 50, 2141–2153 (2011)

    Google Scholar 

  • Tahmasebi, A., Mahdavi, M., Ghalambaz, M.: Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat Transf. Part A Appl. 73, 254–276 (2018)

    Google Scholar 

  • Tiari, S., Qiu, S., Mahdavi, M.: Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material. Energy Convers. Manage. 89, 833–842 (2015)

    Google Scholar 

  • Wang, J., Gan, Y., Liang, J., Tan, M., Li, Y.: Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl. Therm. Eng. 151, 475–485 (2019a)

    Google Scholar 

  • Wang, S., Guo, Y., Peng, C., Wang, W.: Experimental study of paraffin melting in cylindrical cavity with central electric heating rod. J. Environ. Manage. 237, 264–271 (2019b)

    Google Scholar 

  • Zhao, B., Gain, A.K., Ding, W., Zhang, L., Li, X., Fu, Y.: A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int. J. Adv. Manuf. Technol. 95, 2641–2659 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ghalambaz or Pouyan Talebizadehsardari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehryan, S.A.M., Ayoubi-Ayoubloo, K., Shahabadi, M. et al. Conjugate Phase Change Heat Transfer in an Inclined Compound Cavity Partially Filled with a Porous Medium: A Deformed Mesh Approach. Transp Porous Med 132, 657–681 (2020). https://doi.org/10.1007/s11242-020-01407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01407-y

Keywords

Navigation