Skip to main content
Log in

DVCC+ based multifunction and universal filters with the high input impedance features

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, plus-type differential voltage current conveyor based two voltage-mode (VM) analog filters with high input impedance properties yielding easy cascadability with other VM circuits are proposed. The first proposed filter can simultaneously provide all the second-order universal filter responses except all-pass one, and employs only grounded passive elements that are canonical in number. The second one can simultaneously realize all the second-order universal filter responses, and includes one floating resistor, one grounded resistor and two grounded capacitors. No passive element matching condition is required for both of the proposed analog filters. However, both of the proposed filters do not have the feature of orthogonal control of angular resonance frequency and quality factor. Many simulations such as AC, transient, Monte Carlo, etc. are performed to denote the performances of both of the proposed analog filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Winder, S. (2002). Analog and digital filter design (2nd ed.). Oxford: Newnes.

    Google Scholar 

  2. Paarmann, L. D. (2001). Design and analysis of analog filters. A signal processing perspective. Dordrecht: Kluwer.

    Google Scholar 

  3. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and proposals. Radioengineering,17(4), 15–32.

    Google Scholar 

  4. Pal, K. (1989). Modified current conveyors and their applications. Microelectronics Journal,20(4), 37–40.

    Article  Google Scholar 

  5. Minaei, S., & Yuce, E. (2010). All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits, Systems and Signal Processing,29(2), 295–309.

    Article  Google Scholar 

  6. Horng, J.-W., Hou, C.-L., Chang, C.-M., Chou, H.-P., & Lin, C.-T. (2006). High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits, Systems and Signal Processing,25(6), 767–777.

    Article  MathSciNet  Google Scholar 

  7. Tsukutani, T., & Yabuki, N. (2018). A DVCC-based mixed-mode biquadratic circuit. Journal of Electrical Engineering,6, 52–56.

    Google Scholar 

  8. Chiu, W.-Y., Horng, J.-W., Lee, H., & Huang, C.-C. (2010). DVCC-based voltage-mode biquadratic filter with high-input impedance. Proceedings—5th IEEE international symposium on electronic design. Kiel: DELTA.

    Google Scholar 

  9. Horng, J.-W., Hou, C.-L., Chang, C.-M., & Chung, W.-Y. (2006). Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integrated Circuits and Signal Processing,47(1), 73–83.

    Article  Google Scholar 

  10. Chen, H.-P., & Shen, S.-S. (2007). A versatile universal capacitor-grounded voltage-mode filter using DVCCs. ETRI Journal,29(4), 470–476.

    Article  Google Scholar 

  11. Soliman, A. M. (2009). Generation and classification of Kerwin–Huelsman–Newcomb circuits using the DVCC. International Journal of Circuit Theory and Applications,37(7), 835–855.

    Article  Google Scholar 

  12. Abaci, A., & Yuce, E. (2016). Second-order voltage-mode universal filters using two DVCCs, two grounded capacitors and four resistors. Journal of Circuits, Systems and Compute,25(12), 15.

    Google Scholar 

  13. Maheshwari, S., Mohan, J., & Chauhan, D. S. (2010). High input impedance voltage-mode universal filter and quadrature oscillator. Journal of Circuits, Systems and Computers,19(7), 1597–1607.

    Article  Google Scholar 

  14. Minaei, S., & Ibrahim, M. A. (2009). A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. International Journal of Circuit Theory and Applications,37(7), 793–810.

    Article  Google Scholar 

  15. Horng, J.-W. (2010). Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integrated Circuits Signal Processing,62(3), 407–413.

    Article  Google Scholar 

  16. Tangsrirat, W., & Channumsin, O. (2011). Voltage-mode multifunctional biquadratic filter using single DVCC and minimum number of passive elements. Indian Journal of Pure Applied Physics,49(10), 703–707.

    Google Scholar 

  17. Hassan, T. M., & Mahmoud, S. A. (2010). New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. AEU—International Journal of Electronics and Communications,64(1), 47–55.

    Article  Google Scholar 

  18. Yuce, E. (2010). A novel floating simulation topology composed of only grounded passive components. International Journal of Electronics,97(3), 249–262.

    Article  Google Scholar 

  19. Horng, J.-W. (2012). Voltage-mode multifunction biquadratic filter employing single DVCC. International Journal of Electronics,99(2), 153–162.

    Article  Google Scholar 

  20. Yuce, E. (2009). Voltage-mode multifunction filters employing a single DVCC and grounded capacitors. IEEE Transactions on Instrumentation and Measurement,58(7), 2216–2221.

    Article  Google Scholar 

  21. Mohan, J., & Maheshwari, S. (2012). Supplementary high-input impedance voltage-mode universal biquadratic filter using DVCCs. Modelling and Simulation in Engineering,2012, 1.

    Article  Google Scholar 

  22. Horng, J.-W., Hsu, C.-H., & Tseng, C.-Y. (2012). High input impedance voltage-mode universal biquadratic filters with three inputs using three CCs and grounding capacitors. Radioengineering,21(1), 290–296.

    Google Scholar 

  23. Imran, A., Arora, D., & Kumar, R. (2014). Dual DVCC based voltage-mode digitally programmable biquadratic filter. Circuits and Systems,5(01), 1–6.

    Article  Google Scholar 

  24. Yuce, E., Tokat, S., & Yucel, F. (2016). A new wideband electronically tunable grounded resistor employing only three MOS transistors. Turkish Journal of Electrical Engineering and Computer Sciences,24(4), 2442–2453.

    Article  Google Scholar 

  25. Sladok, O., Koton, J., & Herencsar, N. (2017). Universal pseudo-differential filter using DDCC and DVCCs. Elektronika ir Elektrotechnika,23(6), 46–52.

    Article  Google Scholar 

  26. Khateb, F., Khatib, N., & Koton, J. (2011). Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectronics Journal,42(8), 1010–1017.

    Article  Google Scholar 

  27. Ibrahim, M. A., Minaei, S., & Kuntman, H. (2006). DVCC based differential-mode all-pass and notch filters with high CMRR. International Journal of Electronics,93(4), 231–240.

    Article  Google Scholar 

  28. Chen, H.-P., & Wu, K.-H. (2007). Single DDCC-based voltage-mode multifunction filter. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,90(9), 2029–2031.

    Article  Google Scholar 

  29. Yucel, F., & Yuce, E. (2018). A new electronically fine tunable grounded voltage controlled positive resistor. IEEE Transactions on Circuits and Systems II: Express Briefs,65(4), 451–455.

    Article  Google Scholar 

  30. Yuce, E., & Minaei, S. (2008). Universal current-mode filters and parasitic impedance effects on the filter performances. International Journal of Circuit Theory and Applications,36(2), 161–171.

    Article  Google Scholar 

  31. Senani, R., Bhaskar, D. R., & Singh, A. K. (2015). Current conveyors: variants, applications and hardware implementations (pp. 371–390). Switzerland: Springer.

    Google Scholar 

  32. Horng, J.-W. (2001). High-input impedance voltage-mode universal biquadratic filter using three plus-type CCIIs. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,48(10), 996–997.

    Article  Google Scholar 

  33. Senani, R. (1998). Realization of a class of analog signal processing/signal generation circuits: novel applications of the current feedback op-amps. Frequenz,52(9/10), 196–206.

    Google Scholar 

  34. Singh, V. K., Singh, A. K., Bhaskar, D. R., & Senani, R. (2006). New universal biquads employing CFOAs. IEEE Transactions on Circuits and Systems II: Express Briefs,53(11), 1299–1303.

    Article  Google Scholar 

  35. Horng, J.-W., & Lee, M.-H. (1997). High input impedance voltage-mode lowpass, bandpass and highpass filter using current-feedback amplifiers. Electronics Letters,33(11), 947.

    Article  Google Scholar 

  36. Nikoloudis, S., & Psychalinos, C. (2010). Multiple input single output universal biquad filter with current feedback operational amplifiers. Circuits, Systems and Signal Processing,29(6), 1167–1180.

    Article  Google Scholar 

  37. Yuce, E. (2017). A single-input multiple-output voltage-mode second-order universal filter using only grounded passive components. Indian Journal of Engineering & Material Sciences,24(2), 97–106.

    MathSciNet  Google Scholar 

  38. Chiu, W., Liu, S.-I., Tsao, H.-W., & Chen, J.-J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceeding Circuits, Devices and Systems,143(2), 91–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Yuce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpaslan, H., Yuce, E. DVCC+ based multifunction and universal filters with the high input impedance features. Analog Integr Circ Sig Process 103, 325–335 (2020). https://doi.org/10.1007/s10470-020-01643-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01643-8

Keywords

Navigation