Skip to main content
Log in

Low-Power-Operating 3C-SiC Ultraviolet Photodetector for␣Elevated Temperature Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work demonstrates the systematic investigation of the effects of high temperature on key performance parameters including speed, sensitivity, stability, and repeatability of a 3C-SiC/Si ultraviolet (UV) photodetector (PD) at various operating temperatures ranging from 50°C to 200°C. The device with very low dark current (∼ 0.08 pA) exhibited high sensitivity of 4466 and fast rise and decay times of 0.34 s and 0.30 s at 50°C to exposure of 254 nm UV light at a bias voltage of 20 V. Additionally, the device showed very good performance at a low operating voltage of 0.5 V and high temperature of 200°C, with a rise time of 2.68 s and decay time of 1.44 s, while maintaining good stability and repeatability. The slight decrease in performance (sensitivity from 4466 to 932) at 200°C was attributed to the increase in lattice scattering at elevated temperatures, leading to a decrease in carrier mobility. Moreover, the device was fabricated using a very cost-effective process flow. Consequently, this study can contribute to the development of low-power, fast, highly sensitive, and cost-effective 3C-SiC UVPDs for use in high-temperature photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Mehregany, in Transducers and Eurosensors XXVII conference (2013), pp. 2397–2402.

  2. T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, Jpn. J. Appl. Phys. 48, 011605 (2009).

    Article  Google Scholar 

  3. J.L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, Appl. Opt. 45, 7498 (2006).

    Article  CAS  Google Scholar 

  4. T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, Jpn. J. Appl. Phys. 19, 459 (1980).

    Article  Google Scholar 

  5. W.C. Lien, Harsh Environment Silicon Carbide UV Sensor and Junction Field-Effect Transistor, dissertation, (2013).

  6. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, 33 (2003).

    Article  Google Scholar 

  7. R.A. Street, Technology and Applications of Amorphous Silicon (Berlin: Springer, 2011).

    Google Scholar 

  8. H.A. Weakliem and D. Redfield, Appl. Phys. 50, 1491 (1979).

    Article  CAS  Google Scholar 

  9. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, Mater. Sci. Eng. 176, 283 (2011).

    Article  CAS  Google Scholar 

  10. J.B. Casady and R.W. Johnson, Solid-State Electron. 39, 1409 (1996).

    Article  Google Scholar 

  11. C.M. Zetterling, Process Technology for Silicon Carbide Devices (London: INSPEC, 2002).

    Book  Google Scholar 

  12. W.C. Lien, D.S. Tsai, S.H. Chiu, D.G. Senesky, R.P. Maboudian, A.H. Pisano, and J. He, IEEE Electron Device Lett. 32, 1564 (2011).

    Article  CAS  Google Scholar 

  13. D. Zhou, F. Liu, H. Lu, D. Chen, F. Ren, R. Zhang, and Y. Zheng, IEEE Photon. Technol. Lett. 26, 1136 (2014).

    Article  CAS  Google Scholar 

  14. H. Mousa, M.A. Yildirim, and K. Teker, Semicond. Sci. Technol. 34, 095002 (2019).

    Article  CAS  Google Scholar 

  15. S.K. Banerjee and B.G. Streetman, Solid State Electronic Devices (Boston: Prentice Hall, 2016).

    Google Scholar 

  16. Y.K. Sharma, Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications (London: IntechOpen, 2018), pp. 17–44.

    Book  Google Scholar 

  17. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  18. P.G. Neudeck, S.L. Garverick, D.J. Spry, L.Y. Chen, G.M. Beheim, M.J. Krasowski, and M. Mehregany, Physica Status Solidi 206, 2329 (2009).

    Article  CAS  Google Scholar 

  19. A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi, X. Peng, and P. X. Feng, Scientific Reports 6, (2016).

  20. S. Inamdar and K. Rajpure, J. Alloy. Compd. 595, 55 (2014).

    Article  CAS  Google Scholar 

  21. W.R. Chang, Y.K. Fang, S.F. Ting, Y.S. Tsair, C.N. Chang, C.Y. Lin, and S.F. Chen, IEEE Electron Device Lett. 24, 565 (2003).

    Article  CAS  Google Scholar 

  22. S. Mohite and K. Rajpure, Opt. Mater. 36, 833 (2014).

    Article  CAS  Google Scholar 

  23. B. Chen, Y. Yang, X. Xie, N. Wang, Z. Ma, K. Song, and X. Zhang, Chin. Sci. Bull. 57, 4427 (2012).

    Article  CAS  Google Scholar 

  24. H. So, J. Lim, and D.G. Senesky, IEEE Sens. J. 16, 3633 (2016).

    Article  CAS  Google Scholar 

  25. X. Bai, X. Guo, D.C. Mcintosh, H.-D. Liu, and J.C. Campbell, IEEE J. Quantum Electron. 43, 1159 (2007).

    Article  CAS  Google Scholar 

  26. W. Yang, F. Zhang, Z. Liu, Y. Lü, and Z. Wu, Science in China Series G: Physics. Mechan. Astron. 51, 1616 (2008).

    Article  CAS  Google Scholar 

  27. Y. Zhang, A. Li, and A. Milnes, IEEE Photon. Technol. Lett. 9, 363 (1997).

    Article  Google Scholar 

  28. Y.-K. Su, Y.-Z. Chiou, C.-S. Chang, S.-J. Chang, Y.-C. Lin, and J.F. Chen, Solid-State Electron. 46, 2237 (2002).

    Article  CAS  Google Scholar 

  29. D. Brown, J. Edmond, US Patent 5394005 (1995).

Download references

Acknowledgements

KT gratefully thanks the Istanbul Development Agency (ISTKA) for providing support for this research. Funding was provided by Istanbul Kalkinma Ajansi (Grant No. TR10/16/YNY/0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasif Teker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teker, K., Mousa, H. Low-Power-Operating 3C-SiC Ultraviolet Photodetector for␣Elevated Temperature Applications. J. Electron. Mater. 49, 3813–3818 (2020). https://doi.org/10.1007/s11664-020-08097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08097-8

Keywords

Navigation