Skip to main content
Log in

Genome wide characterization revealed MnMLO2 and MnMLO6A as candidate genes involved in powdery mildew susceptibility in mulberry

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mulberry is a fast growing economically important tree for sericulture industry and contains compounds for preventing and treating several diseases and ailments. The quality and quantity of mulberry leaf available to produce silk fibre and for medicinal purpose is greatly affected by number of foliar diseases, out of which powdery mildew is the major one. Imparting genetic resistance becomes an important approach in disease management in mulberry as spraying of fungicides has harmful effects on silkworm growth and development. Deployment of non-functional susceptible genes such as Mildew resistance Locus O (MLO) against powdery mildew in few crops stimulated to identify and characterize MLO genes in mulberry. In this study, genome wide analysis identified 16 MLO genes in Morus notabilis. Phylogenetic analysis found that MnMLO2, MnMLO6A, MnMLO6B, MnMLO12A and MnMLO12B clustered with functionally characterized MLOs associated with powdery mildew susceptibility in dicot species. Gene expression analysis indicated increased transcript abundance of MnMLO2, MnMLO6A, and MnMLO12A in response to powdery mildew infection. Further, conserved motifs exclusive to functionally characterized MLOs were identified in MnMLO1C, MnMLO2 and MnMLO6A proteins. Combined analysis of the phylogenetic relationship, conserved motif analysis and gene expression in response to infection identified MnMLO2 and MnMLO6A as potential candidate genes involved in powdery mildew susceptibility in mulberry. Identification and deployment of natural and induced mutations in the candidate genes can be useful for mulberry breeding programs to develop powdery mildew resistant varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodrigues EL, Marcelino G, Silva GT, Figueiredo PS, Garcez WS, Corsino J, Guimarães de RD, Freitas de KD (2019) Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. Int J Mol Sci 20(2):301. https://doi.org/10.3390/ijms20020301

    Article  CAS  PubMed Central  Google Scholar 

  2. Gupta VP (2001) Diseases of mulberry and their management. In: Srivastava MK (ed) Plant pathology. Pointer Publishers, Jaipur, pp 130–164

    Google Scholar 

  3. Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12. https://doi.org/10.1007/s11032-009-9323-6

    Article  PubMed  Google Scholar 

  4. Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281. https://doi.org/10.1111/NPH.12889@10.1002

    Article  CAS  PubMed  Google Scholar 

  5. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38:716–720. https://doi.org/10.1038/ng1806

    Article  CAS  PubMed  Google Scholar 

  6. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant-Microbe Interact 21:30–39. https://doi.org/10.1094/MPMI-21-1-0030

    Article  CAS  PubMed  Google Scholar 

  7. Feechan A, Jermakow AM, Dry IB (2009) Grapevine MLO candidates required for powdery mildew pathogenicity? Plant Signal Behav 4:522–523. https://doi.org/10.4161/psb.4.6.8575

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou SJ, Jing Z, Shi JL (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet Mol Res 12:6565–6578. https://doi.org/10.4238/2013.December.11.8

    Article  CAS  PubMed  Google Scholar 

  9. Pessina S, Pavan S, Catalano D, Gallotta A, Visser RGF, Bai Y, Malnoy M, Schouten HJ (2014) Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genom 15:618. https://doi.org/10.1186/1471-2164-15-618

    Article  Google Scholar 

  10. Liu Q, Zhu H (2008) Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409:1–10. https://doi.org/10.1016/j.gene.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  11. Konishi S, Sasakuma T, Sasanuma T (2010) Identification of novel Mlo family members in wheat and their genetic characterization. Genes Genet Syst 85:167–175. https://doi.org/10.1266/ggs.85.167

    Article  CAS  PubMed  Google Scholar 

  12. Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol 8:878–895. https://doi.org/10.1093/gbe/evw036

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jørgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152. https://doi.org/10.1007/BF00023919

    Article  Google Scholar 

  14. Kusch S, Panstruga R (2017) Mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant-Microbe Interact 30:179–189. https://doi.org/10.1094/MPMI-12-16-0255-CR

    Article  CAS  PubMed  Google Scholar 

  15. Devoto A, Piffanelli P, Nilsson IM, Wallin E, Panstruga R, Von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004. https://doi.org/10.1074/jbc.274.49.34993

    Article  CAS  PubMed  Google Scholar 

  16. Reinstädler A, Müller J, Czembor JH, Piffanelli P, Panstruga R (2010) Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biol 10:31. https://doi.org/10.1186/1471-2229-10-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085. https://doi.org/10.1104/pp.010954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters AMA, Visser RGF, Bai Y (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8(7):e70723. https://doi.org/10.1371/journal.pone.0070723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Humphry M, Reinstädler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878. https://doi.org/10.1111/j.1364-3703.2011.00718.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Valè G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016. https://doi.org/10.1038/hortres.2016.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nie J, Wang Y, He H, Guo C, Zhu W, Pan J, Li D, Lian H, Pan J, Cai R (2015) Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumissativus L.). Front Plant Sci 6:1155. https://doi.org/10.3389/fpls.2015.01155

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pessina S, Angeli D, Martens S, Visser RGF, Bai Y, Salamini F, Velasco R, Schouten HJ, Malnoy M (2016) The knock-down of the expression of MdMLO19 reduces susceptibility to powdery mildew (Podosphaera leucotricha) in apple (Malus domestica). Plant Biotechnol J 14:2033–2044. https://doi.org/10.1111/pbi.12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Appiano M, Pavan S, Catalano D, Zheng Z, Bracuto V, Lotti C, Visser RGF, Ricciardi L, Bai Y (2015) Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1. Transgenic Res 24:847–858. https://doi.org/10.1007/s11248-015-9878-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu X, Wang Q, Zhang H, Jian H, Zhou N, Ji C, Yan H, Bao M, Tang K (2015) Antisense RhMLO1 gene transformation enhances resistance to the powdery mildew pathogen in Rosa multiflora. Plant Mol Biol Rep 33:1659–1665. https://doi.org/10.1007/s11105-015-0862-1

    Article  CAS  Google Scholar 

  25. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1223

    Article  PubMed  PubMed Central  Google Scholar 

  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  27. Dobson L, Reményi I, Tusnády GE (2015) CCTOP: a consensus constrained TOPology prediction web server. Nucleic Acids Res 43:W408–W412. https://doi.org/10.1093/nar/gkv451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  PubMed  Google Scholar 

  29. Käll L, Krogh A, Sonnhammer ELL (2007) Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res 35:W429–W432. https://doi.org/10.1093/nar/gkm256

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chou KC, Bin SH (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5(6):e11335. https://doi.org/10.1371/journal.pone.0011335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  32. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME Suite. Nucleic Acids Res 43:W39–W49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lescot M (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. https://doi.org/10.1093/nar/30.1.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667. https://doi.org/10.1038/nprot.2016.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  40. Elliott C, Müller J, Miklis M, Bhat RA, Schulze-Lefert P, Panstruga R (2005) Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 385:243–254. https://doi.org/10.1042/BJ20040993

    Article  CAS  PubMed  Google Scholar 

  41. Filiz E, Vatansever R (2018) Genome-wide identification of Mildew Resistance Locus O (MLO) genes in tree model poplar (Populus trichocarpa): powdery mildew management in woody plants. Eur J Plant Pathol 152:95–109. https://doi.org/10.1007/s10658-018-1454-3

    Article  Google Scholar 

  42. Rispail N, Rubiales D (2016) Genome-wide identification and comparison of legume MLO gene family. Sci Rep 6:32673. https://doi.org/10.1038/srep32673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng Z, Appiano M, Pavan S, Bracuto V, Ricciardi L, Visser RGF, Wolters AMA, Bai Y (2016) Genome-wide study of the tomato SlMLO gene family and its functional characterization in response to the powdery mildew fungus Oidium neolycopersici. Front Plant Sci 7:380. https://doi.org/10.3389/fpls.2016.00380

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 80(330):968–971. https://doi.org/10.1126/science.1195211

    Article  CAS  Google Scholar 

  45. Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM (2009) Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in arabidopsis root thigmomorphogenesis. Plant Cell 21:1972–1991. https://doi.org/10.1105/tpc.108.062653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andolfo G, Iovieno P, Ricciardi L, Lotti C, Filippone E, Pavan S, Ercolano MR (2019) Evolutionary conservation of MLO gene promoter signatures. BMC Plant Biol 19:150. https://doi.org/10.1186/s12870-019-1749-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qin B, Wang M, He HX, Xiao HX, Zhang Y, Wang LF (2019) Identification and characterization of a potential candidate MLO gene conferring susceptibility to powdery mildew in rubber tree. Phytopathology 109:1236–1245. https://doi.org/10.1094/PHYTO-05-18-0171-R

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by the Central Silk Board, India through project code: PRP08002MI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramesha.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5395_MOESM1_ESM.xlsx

Supplementary file1 (XLSX 20 kb)—Table S1: Data sets analyzed for in-silico expression of MnMLOs. Ninteen SRA files details including Morus species, tissue and stress treatment analyzed.

11033_2020_5395_MOESM2_ESM.docx

Supplementary file2 (DOCX 18 kb)—Table S2: Conservation of previously reported 618 invariable amino acids in deduced MnMLO protein sequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesha, A., Dubey, H., Vijayan, K. et al. Genome wide characterization revealed MnMLO2 and MnMLO6A as candidate genes involved in powdery mildew susceptibility in mulberry. Mol Biol Rep 47, 2889–2900 (2020). https://doi.org/10.1007/s11033-020-05395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05395-6

Keywords

Navigation