Skip to main content

Advertisement

Log in

Multi-piezoelectric materials based doubly clamped energy harvester

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The challenge of continuously powering the wireless sensor network located at remote areas has been resolved by the emergence of piezoelectric energy harvester. This paper evolved a new idea of using different piezoelectric materials together within segmented doubly clamped bimorph piezoelectric energy harvester (DCBPEH). The finite element modeling of the device has been presented here using COMSOL multiphysics software. This paper starts with concept of strain nodes and further better performance of segmented electrodes-based beam over the continuous electrode-based beam has been achieved. Next, a performance analysis study with continuous electrode-based beam has been carried out for different variants of two piezoelectric materials, namely, PMN-xPT and PZT. From this study, PMN-35%PT and PZT-5H piezoelectric materials are found to be best variants. Finally, the performance of segmented DCBPEH has been observed for different positioning formats of PMN-35%PT (M1) and PZT-5H (M2) piezoelectric materials on different segments of the beam. From this analysis, M1–M1–M2 and M2–M1–M1 are noted to be two favorable positioning formats which provide similar and maximum performance (7.78 mW) as compared to other formats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, P.K. Wright, V. Sundararajan, Pervasive Comput. 4, 28 (2005)

    Article  Google Scholar 

  2. P. Mittal, Y.S. Negi, R.K. Singh, J. Comput. Electron. 14, 828 (2015)

    Article  Google Scholar 

  3. P. Mittal, Y.S. Negi, R.K. Singh, Microelectron. Eng. 150, 7 (2016)

    Article  CAS  Google Scholar 

  4. G. Poulin, E. Sarraute, F. Costa, Sens. Actuator A Phys. 116, 461 (2004)

    Article  CAS  Google Scholar 

  5. S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26, 1131 (2003)

    Article  Google Scholar 

  6. S. Wei, H. Hu, S. He, Smart Mater. Struct. 22, 105020 (2013)

    Article  Google Scholar 

  7. J.C. Park, J.Y. Park, Y.P. Lee, J. Microelectromech. Syst. 19, 1215 (2010)

    Article  CAS  Google Scholar 

  8. A. Toprak, O. Tigli, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 2162 (2013)

    Article  Google Scholar 

  9. S. Saadon, O. Sidek, Energy Convers. Manag. 52, 500 (2011)

    Article  CAS  Google Scholar 

  10. A. Erturk, P.A. Tarazaga, J.R. Farmer, D.J. Inman, J. Vib. Acoust. 131, 011010 (2009)

    Article  Google Scholar 

  11. A. Erturk, D.J. Inman, J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  12. A. Erturk, D.J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008)

    Article  CAS  Google Scholar 

  13. V. Ostasevicius, G. Janusas, I. Milasauskaite, M. Zilys, L. Kizauskiene, Sensors 15, 12594 (2015)

    Article  Google Scholar 

  14. A. Daniels, M. Zhu, A. Tiwari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 2626 (2013)

    Article  Google Scholar 

  15. H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007)

    Article  Google Scholar 

  16. S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010)

    Article  Google Scholar 

  17. G. Tang, J.Q. Liu, B. Yang, J.B. Luo, H.S. Liu, Y.G. Li, C.S. Yang, V.D. Dao, K. Tanaka, S. Sugiyama, Electron. Lett. 48, 784 (2012)

    Article  CAS  Google Scholar 

  18. E. Suna, W. Caoa, Prog. Mater. Sci. 65, 124 (2014)

    Article  Google Scholar 

  19. P. Finkel, H. Robinson, J. Stace, A. Amin, Appl. Phys. Lett. 97, 122903 (2010)

    Article  Google Scholar 

  20. B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.G. Ye, Phys. Rev. B 66, 054104 (2002)

    Article  Google Scholar 

  21. R. Kashyap, T.R. Lenka, S. Baishya, IEEE Electron. Device Lett. 36, 1369 (2015)

    Article  Google Scholar 

  22. J. Baker, S. Roundy, P. Wright, 3rd International Energy Conversion Engineering Conference (2005)

  23. S. Saxena, R.K. Dwivedi, V. Khare, AIP Conf. Proc. 2009, 020057 (2018)

    Article  Google Scholar 

  24. G. Janusas, I. Milasauskaite, V. Ostasevicius, R. Dauksevicius, J. Vibroeng. 16, 1326–1333 (2014)

    Google Scholar 

  25. P. Kodali, A. Krishna, R. Varun, M. Prasad, S. Sambandan, IEEE Electron Device Lett. 35, 485–487 (2014)

    Article  Google Scholar 

  26. M. Krishnasamy, T.R. Lenka, Microsyst. Technol. 24, 1577–1587 (2018)

    Article  Google Scholar 

  27. C. He, D. Zhou, F. Wang, F. Xu, D. Lin, H. Luo, J. Appl. Phys. 100, 86107 (2006)

    Article  Google Scholar 

  28. K. Jaehwan, V.V. Varadan, V.K. Varadan, X.Q. Bao, Smart Mater. Struct. 5, 165 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saxena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S., Dwivedi, R.K. & Khare, V. Multi-piezoelectric materials based doubly clamped energy harvester. J Mater Sci: Mater Electron 31, 6998–7011 (2020). https://doi.org/10.1007/s10854-020-03266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03266-1

Navigation