Skip to main content
Log in

Electron-transfer enhanced MoO2-Ni heterostructures as a highly efficient pH-universal catalyst for hydrogen evolution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen is one of the most promising energy carriers to replace fossil fuels and electrolyzing water to produce hydrogen is a very effective method. However, designing highly active and stable non-precious metal hydrogen evolution electrocatalysts that can be used in universal pH is a huge challenge. Here, we have reported a simple strategy to develop a highly active and durable non-precious MoO2-Ni electrocatalyst for hydrogen evolution reaction (HER) in a wide pH range. The MoO2-Ni catalyst exhibits a superior electrocatalytic performance with low overpotentials of 46, 69, and 84 mV to reach -10 mA cm-2 in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M PBS electrolytes, respectively. At the same time, the catalyst also shows outstanding stability over a wide pH range. It is particularly noted that the catalytic performance of MoO2-Ni in alkaline solution is comparable to the highest performing catalysts reported. The outstanding HER performance is mainly attributed to the collective effect of the rational morphological design, electronic structure engineering, and strong interfacial coupling between MoO2 and Ni in heterojunctions. This work provides a viable method for the synthesis of inexpensive and efficient HER electrocatalysts for the use in wide pH ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai J, Huang B, Chao Y, Chen X, Guo S. Adv Mater, 2019, 31: 1805541

    Article  CAS  Google Scholar 

  2. Shi Y, Zhou Y, Yang DR, Xu WX, Wang C, Wang FB, Xu JJ, Xia XH, Chen HY. J Am Chem Soc, 2017, 139: 15479–15485

    Article  CAS  PubMed  Google Scholar 

  3. Song F, Li W, Yang J, Han G, Liao P, Sun Y. Nat Commun, 2018, 9: 4531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 62: 1365–1370

    Article  CAS  Google Scholar 

  5. Elbert K, Hu J, Ma Z, Zhang Y, Chen G, An W, Liu P, Isaacs HS, Adzic RR, Wang JX. ACS Catal, 2015, 5: 6764–6772

    Article  CAS  Google Scholar 

  6. Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Angew Chem Int Ed, 2018, 57: 5076–5080

    Article  CAS  Google Scholar 

  7. Zhou M, Weng Q, Popov ZI, Yang Y, Antipina LY, Sorokin PB, Wang X, Bando Y, Golberg D. ACS Nano, 2018, 12: 4148–4155

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Chen J, Wang Q, Cai WB, Chen S. Chem Mater, 2017, 29: 10060–10067

    Article  CAS  Google Scholar 

  9. Chen J, Liu J, Xie JQ, Ye H, Fu XZ, Sun R, Wong CP. Nano Energy, 2019, 56: 225–233

    Article  CAS  Google Scholar 

  10. Liu B, Huo L, Gao Z, Zhi G, Zhang G, Zhang J. Small, 2017, 13: 1700092

    Article  CAS  Google Scholar 

  11. Liu X, Li W, Zou S. J Mater Chem A, 2018, 6: 17067–17074

    Article  CAS  Google Scholar 

  12. Saat G, Balci FM, Alsaç EP, Karadas F, Dag Ö. Small, 2018, 14: 1701913

    Article  CAS  Google Scholar 

  13. Yang ZD, Chang ZW, Xu JJ, Yang XY, Zhang XB. Sci China Chem, 2017, 60: 1540–1545

    Article  CAS  Google Scholar 

  14. Zhang C, Hou M, Cai X, Lin J, Liu X, Wang R, Zhou L, Gao J, Li B, Lai L. J Mater Chem A, 2018, 6: 15630–15639

    Article  CAS  Google Scholar 

  15. Wang M, Li Z, Wang C, Zhao R, Li C, Guo D, Zhang L, Yin L. Adv Funct Mater, 2017, 27: 1701014

    Article  CAS  Google Scholar 

  16. Zhou M, Liu Z, Song Q, Li X, Chen B, Liu Z. Appl Catal B-Environ, 2019, 244: 188–196

    Article  CAS  Google Scholar 

  17. Chen L, Zhang J, Ren X, Ge R, Teng W, Sun X, Li X. Nanoscale, 2017, 9: 16632–16637

    Article  CAS  PubMed  Google Scholar 

  18. Zhang ZS, Fu XP, Wang WW, Jin Z, Song QS, Jia CJ. Sci China Chem, 2018, 61: 1389–1398

    Article  CAS  Google Scholar 

  19. Qi J, Zhang W, Cao R. Chem Commun, 2017, 53: 9277–9280

    Article  CAS  Google Scholar 

  20. Ji D, Peng L, Shen J, Deng M, Mao Z, Tan L, Wang M, Xiang R, Wang J, Shah SSA. Chem Commun, 2019, 55: 3290–3293

    Article  CAS  Google Scholar 

  21. Kauppinen MM, Melander MM, Bazhenov AS, Honkala K. ACS Catal, 2018, 8: 11633–11647

    Article  CAS  Google Scholar 

  22. Yan H, Qin XT, Yin Y, Teng YF, Jin Z, Jia CJ. Appl Catal B-Environ, 2018, 226: 182–193

    Article  CAS  Google Scholar 

  23. Gong M, Zhou W, Tsai MC, Zhou J, Guan M, Lin MC, Zhang B, Hu Y, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai H. Nat Commun, 2014, 5: 4695

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Ni K, Niu C, Guo R, Xi W, Wang Z, Meng J, Li J, Zhu Y, Wu P, Li Q, Luo J, Wu X, Mai L. ACS Catal, 2019, 9: 2275–2285

    Article  CAS  Google Scholar 

  25. Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W. Adv Mater, 2017, 29: 1605502

    Article  CAS  Google Scholar 

  26. Adam A, Suliman MH, Siddiqui MN, Yamani ZH, Merzougui B, Qamar M. ACS Appl Mater Interfaces, 2018, 10: 29407–29416

    Article  CAS  PubMed  Google Scholar 

  27. Lu XF, Yu L, Lou XWD. Sci Adv, 2019, 5: eaav6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahmood J, Li F, Jung SM, Okyay MS, Ahmad I, Kim SJ, Park N, Jeong HY, Baek JB. Nat Nanotech, 2017, 12: 441–446

    Article  CAS  Google Scholar 

  29. Yao RQ, Zhou YT, Shi H, Zhang QH, Gu L, Wen Z, Lang XY, Jiang Q. ACS Energy Lett, 2019, 4: 1379–1386

    Article  CAS  Google Scholar 

  30. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Sci Adv, 2016, 2: e1501602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sheng W, Zhuang Z, Gao M, Zheng J, Chen JG, Yan Y. Nat Commun, 2015, 6: 5848

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Zou X, Ai X, Chen H, Sun L, Zou X. Adv Energy Mater, 2018, 1803369

    Google Scholar 

  33. Mishra IK, Zhou H, Sun J, Qin F, Dahal K, Bao J, Chen S, Ren Z. Energy Environ Sci, 2018, 11: 2246–2252

    Article  CAS  Google Scholar 

  34. Yao Q, Huang B, Zhang N, Sun M, Shao Q, Huang X. Angew Chem Int Ed, 2019, 58: 13983–13988

    Article  CAS  Google Scholar 

  35. Kumar P, Singh M, Reddy GB. Mater Res Express, 2017, 4: 036405

    Article  CAS  Google Scholar 

  36. Ku JH, Jung YS, Lee KT, Kim CH, Oh SM. J Electrochem Soc, 2009, 156: A688

    Article  CAS  Google Scholar 

  37. Li Z, Yu C, Wen Y, Gao Y, Xing X, Wei Z, Sun H, Zhang YW, Song W. ACS Catal, 2019, 9: 5084–5095

    Article  CAS  Google Scholar 

  38. Yang L, Yu J, Wei Z, Li G, Cao L, Zhou W, Chen S. Nano Energy, 2017, 41: 772–779

    Article  CAS  Google Scholar 

  39. Guo J, Wu C, Zhang J, Yan P, Tian J, Shen X, Isimjan TT, Yang X. J Mater Chem A, 2019, 7: 8865–8872

    Article  CAS  Google Scholar 

  40. Guo J, Wang B, Yang D, Wan Z, Yan P, Tian J, Isimjan TT, Yang X. Appl Catal B-Environ, 2020, 265: 118584

    Article  CAS  Google Scholar 

  41. Jin H, Liu X, Jiao Y, Vasileff A, Zheng Y, Qiao SZ. Nano Energy, 2018, 53: 690–697

    Article  CAS  Google Scholar 

  42. Wan J, Wu J, Gao X, Li T, Hu Z, Yu H, Huang L. Adv Funct Mater, 2017, 27: 1703933

    Article  CAS  Google Scholar 

  43. Zhou Y, Huang W, Zhang X, Wang M, Zhang L, Shi J. Chem Eur J, 2017, 23: 17029–17036

    Article  CAS  PubMed  Google Scholar 

  44. Ito Y, Ohto T, Hojo D, Wakisaka M, Nagata Y, Chen L, Hu K, Izumi M, Fujita J, Adschiri T. ACS Catal, 2018, 8: 3579–3586

    Article  CAS  Google Scholar 

  45. Chi JQ, Chai YM, Shang X, Dong B, Liu CG, Zhang W, Jin Z. J Mater Chem A, 2018, 6: 24783–24792

    Article  CAS  Google Scholar 

  46. Boppella R, Tan J, Yang W, Moon J. Adv Funct Mater, 2019, 29: 1807976

    Article  CAS  Google Scholar 

  47. Yang L, Zeng L, Liu H, Deng Y, Zhou Z, Yu J, Liu H, Zhou W. Appl Catal B-Environ, 2019, 249: 98–105

    Article  CAS  Google Scholar 

  48. Xiao P, Ge X, Wang H, Liu Z, Fisher A, Wang X. Adv Funct Mater, 2015, 25: 1520–1526

    Article  CAS  Google Scholar 

  49. Youn DH, Han S, Kim JY, Kim JY, Park H, Choi SH, Lee JS. ACS Nano, 2014, 8: 5164–5173

    Article  CAS  PubMed  Google Scholar 

  50. Yang X, Lu AY, Zhu Y, Hedhili MN, Min S, Huang KW, Han Y, Li LJ. Nano Energy, 2015, 15: 634–641

    Article  CAS  Google Scholar 

  51. Qi Y, Zhang L, Sun L, Chen G, Luo Q, Xin H, Peng J, Li Y, Ma F. Nanoscale, 2020, 12: 1985–1993

    Article  CAS  PubMed  Google Scholar 

  52. Chen YY, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai ZH, Wan LJ, Hu JS. Adv Mater, 2017, 29: 1703311

    Article  CAS  Google Scholar 

  53. Yang X, Lu AY, Zhu Y, Min S, Hedhili MN, Han Y, Huang KW, Li LJ. Nanoscale, 2015, 7: 10974–10981

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. J Am Chem Soc, 2011, 133: 7296–7299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (21965005), Natural Science Foundation of Guangxi Province (2018GXNSFAA294077 and 2018GXNSFAA281220), Project of High-Level Talents of Guangxi (F-KA18015 and 2018ZD004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tayirjan Taylor Isimjan or Xiulin Yang.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Huang, H., Huang, M. et al. Electron-transfer enhanced MoO2-Ni heterostructures as a highly efficient pH-universal catalyst for hydrogen evolution. Sci. China Chem. 63, 841–849 (2020). https://doi.org/10.1007/s11426-019-9721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9721-0

Keywords

Navigation