Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Understanding cachexia in the context of metastatic progression

Abstract

Tumours reprogram host physiology, metabolism and immune responses during cancer progression. The release of soluble factors, exosomes and metabolites from tumours leads to systemic changes in distant organs, where cancer cells metastasize and grow. These tumour-derived circulating factors also profoundly impact tissues that are rarely inhabited by metastatic cancer cells such as skeletal muscle and adipose tissue. In fact, the majority of patients with metastatic cancer develop a debilitating muscle-wasting syndrome, known as cachexia, that is associated with decreased tolerance to antineoplastic therapy, poor prognosis and accelerated death, with no approved treatments. In this Perspective, we discuss the development of cachexia in the context of metastatic progression. We briefly discuss how circulating factors either directly or indirectly promote cachexia development and examine how signals from the metastatic process can trigger and amplify this process. Finally, we highlight promising therapeutic opportunities for targeting cachexia in the context of metastatic cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common mechanisms of muscle atrophy in cancer independent of stage.
Fig. 2: Potential triggers of cachexia during pre-metastatic conditioning.
Fig. 3: Changes in metastatic microenvironments: amplifiers of cachexia?

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Fearon, K. C., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Fearon, K., Arends, J. & Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10, 90–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Bruera, E. & Sweeney, C. Cachexia and asthenia in cancer patients. Lancet Oncol. 1, 138–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kalantar-Zadeh, K. et al. Why cachexia kills: examining the causality of poor outcomes in wasting conditions. J. Cachexia Sarcopenia Muscle 4, 89–94 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).

    Article  PubMed  Google Scholar 

  8. Ni, X., Yang, J. & Li, M. Imaging-guided curative surgical resection of pancreatic cancer in a xenograft mouse model. Cancer Lett. 324, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gallagher, I. J. et al. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin. Cancer Res. 18, 2817–2827 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Salazar-Degracia, A. et al. Reduced lung cancer burden by selective immunomodulators elicits improvements in muscle proteolysis and strength in cachectic mice. J. Cell Physiol. 234, 18041–18052 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, G. et al. Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat. Med. 24, 770–781 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).

    Article  PubMed  Google Scholar 

  13. Jatoi, A. et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68, 234–239 (2010).

    Article  PubMed  Google Scholar 

  14. Penna, F., Busquets, S. & Argiles, J. M. Experimental cancer cachexia: evolving strategies for getting closer to the human scenario. Semin. Cell Dev. Biol. 54, 20–27 (2016).

    Article  PubMed  Google Scholar 

  15. Barreto, R. et al. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget 7, 43442–43460 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gilliam, L. A., Moylan, J. S., Callahan, L. A., Sumandea, M. P. & Reid, M. B. Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy. Muscle Nerve 43, 94–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Damrauer, J. S. et al. Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. Eur. J. Transl. Myol. 28, 7590 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Waning, D. L. et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat. Med. 21, 1262–1271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greco, S. H. et al. TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS One 10, e0132786 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Go, K. L. et al. Orthotopic patient-derived pancreatic cancer xenografts engraft into the pancreatic parenchyma, metastasize, and induce muscle wasting to recapitulate the human disease. Pancreas 46, 813–819 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Norton, J. A., Moley, J. F., Green, M. V., Carson, R. E. & Morrison, S. D. Parabiotic transfer of cancer anorexia/cachexia in male rats. Cancer Res. 45, 5547–5552 (1985).

    CAS  PubMed  Google Scholar 

  22. Argiles, J. M., Stemmler, B., Lopez-Soriano, F. J. & Busquets, S. Nonmuscle tissues contribution to cancer cachexia. Mediators Inflamm. 2015, 182872 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Argiles, J. M., Lopez-Soriano, F. J. & Busquets, S. Mediators of cachexia in cancer patients. Nutrition 66, 11–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Petruzzelli, M. & Wagner, E. F. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes. Dev. 30, 489–501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandri, M. Protein breakdown in cancer cachexia. Semin. Cell Dev. Biol. 54, 11–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Baracos, V. E., DeVivo, C., Hoyle, D. H. & Goldberg, A. L. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am. J. Physiol. 268, E996–E1006 (1995).

    CAS  PubMed  Google Scholar 

  27. Stitt, T. N. et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14, 395–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Sandri, M. et al. FOXO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Honors, M. A. & Kinzig, K. P. The role of insulin resistance in the development of muscle wasting during cancer cachexia. J. Cachexia Sarcopenia Muscle 3, 5–11 (2012).

    Article  PubMed  Google Scholar 

  30. Heber, D., Byerly, L. O. & Chlebowski, R. T. Metabolic abnormalities in the cancer patient. Cancer 55, 225–229 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Cahill, G. F. Jr, Aoki, T. T., Brennan, M. F. & Muller, W. A. Insulin and muscle amino acid balance. Proc. Nutr. Soc. 31, 233–238 (1972).

    Article  CAS  PubMed  Google Scholar 

  32. Voet, D. & Voet, J. G. Biochemistry. 4th edn (Wiley, 2011).

  33. Wang, X., Hu, Z., Hu, J., Du, J. & Mitch, W. E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147, 4160–4168 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Fernandes, L. C., Machado, U. F., Nogueira, C. R., Carpinelli, A. R. & Curi, R. Insulin secretion in Walker 256 tumor cachexia. Am. J. Physiol. 258, E1033–E1036 (1990).

    CAS  PubMed  Google Scholar 

  35. Asp, M. L., Tian, M., Wendel, A. A. & Belury, M. A. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int. J. Cancer 126, 756–763 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Kwon, Y. et al. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev. Cell 33, 36–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Figueroa-Clarevega, A. & Bilder, D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev. Cell 33, 47–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asp, M. L., Tian, M., Kliewer, K. L. & Belury, M. A. Rosiglitazone delayed weight loss and anorexia while attenuating adipose depletion in mice with cancer cachexia. Cancer Biol. Ther. 12, 957–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trobec, K. et al. Rosiglitazone reduces body wasting and improves survival in a rat model of cancer cachexia. Nutrition 30, 1069–1075 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Bhatnagar, S., Mittal, A., Gupta, S. K. & Kumar, A. TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J. Cell Physiol. 227, 1042–1051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai, D. et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119, 285–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Guttridge, D. C., Mayo, M. W., Madrid, L. V., Wang, C. Y. & Baldwin, A. S. Jr. NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289, 2363–2366 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Fukawa, T. et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat. Med. 22, 666–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Zimmers, T. A. et al. Induction of cachexia in mice by systemically administered myostatin. Science 296, 1486–1488 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Benny Klimek, M. E. et al. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem. Biophys. Res. Commun. 391, 1548–1554 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Emmerson, P. J. et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 23, 1215–1219 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hsu, J. Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Tsai, V. W. et al. TGF-β superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS One 8, e55174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnen, H. et al. Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nat. Med. 13, 1333–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hammers, D. W. et al. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol. Med. 9, 531–544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zimmers, T. A. et al. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic. Res. Cardiol. 112, 48 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jones, J. E. et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 22, 1522–1530 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Wortzel, I., Dror, S., Kenific, C. M. & Lyden, D. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49, 347–360 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, G. et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat. Commun. 8, 589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yang, J. et al. ZIP4 promotes muscle wasting and cachexia in mice with orthotopic pancreatic tumors by stimulating RAB27B-regulated release of extracellular vesicles from cancer cells. Gastroenterology 156, 722–734 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. He, W. A. et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc. Natl Acad. Sci. USA 111, 4525–4529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Calore, F. et al. The TLR7/8/9 antagonist IMO-8503 inhibits cancer-induced cachexia. Cancer Res. 78, 6680–6690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Giralt, M. & Villarroya, F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154, 2992–3000 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Kliewer, K. L. et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther. 16, 886–897 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Petruzzelli, M. et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Kir, S. et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ang, Q. Y. et al. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J. Physiol. Sci. 67, 395–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  67. Mueller-Klieser, W., Walenta, S., Paschen, W., Kallinowski, F. & Vaupel, P. Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting. J. Natl Cancer Inst. 80, 842–848 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Walenta, S. et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000).

    CAS  PubMed  Google Scholar 

  69. Friesen, D. E., Baracos, V. E. & Tuszynski, J. A. Modeling the energetic cost of cancer as a result of altered energy metabolism: implications for cachexia. Theor. Biol. Med. Model. 12, 17 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Argiles, J. M., Fontes-Oliveira, C. C., Toledo, M., Lopez-Soriano, F. J. & Busquets, S. Cachexia: a problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 5, 279–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Felig, P., Pozefsky, T., Marliss, E. & Cahill, G. F. Jr. Alanine: key role in gluconeogenesis. Science 167, 1003–1004 (1970).

    Article  CAS  PubMed  Google Scholar 

  72. Ishikawa, E. The regulation of uptake and output of amino acids by rat tissues. Adv. Enzyme Regul. 14, 117–136 (1976).

    Article  CAS  PubMed  Google Scholar 

  73. Felig, P. & Wahren, J. Amino acid metabolism in exercising man. J. Clin. Invest. 50, 2703–2714 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stephens, N. A., Skipworth, R. J. & Fearon, K. C. Cachexia, survival and the acute phase response. Curr. Opin. Support. Palliat. Care 2, 267–274 (2008).

    Article  PubMed  Google Scholar 

  75. Bonetto, A. et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 6, e22538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kushner, I. The phenomenon of the acute phase response. Ann. NY Acad. Sci. 389, 39–48 (1982).

    Article  CAS  PubMed  Google Scholar 

  77. Reeds, P. J., Fjeld, C. R. & Jahoor, F. Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J. Nutr. 124, 906–910 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Preston, T. et al. Fibrinogen synthesis is elevated in fasting cancer patients with an acute phase response. J. Nutr. 128, 1355–1360 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Goncalves, M. D. et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc. Natl Acad. Sci. USA 115, E743–E752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Flint, T. R. et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 24, 672–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schakman, O., Gilson, H. & Thissen, J. P. Mechanisms of glucocorticoid-induced myopathy. J. Endocrinol. 197, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Clarke, B. A. et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 6, 376–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Braun, T. P. et al. Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J. 27, 3572–3582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huot, J. R., Novinger, L. J., Pin, F. & Bonetto, A. HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia. Dis. Model. Mech. https://doi.org/10.1242/dmm.043166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Rasanen, K. et al. Comparative secretome analysis of epithelial and mesenchymal subpopulations of head and neck squamous cell carcinoma identifies S100A4 as a potential therapeutic target. Mol. Cell Proteom. 12, 3778–3792 (2013).

    Article  CAS  Google Scholar 

  88. Suarez-Carmona, M. et al. Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment. J. Pathol. 236, 491–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Fernando, R. I., Castillo, M. D., Litzinger, M., Hamilton, D. H. & Palena, C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 71, 5296–5306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hartman, Z. C. et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73, 3470–3480 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Ginestier, C. et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest. 120, 485–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Strassmann, G., Fong, M., Kenney, J. S. & Jacob, C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest. 89, 1681–1684 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ohe, Y. et al. Interleukin-6 cDNA transfected Lewis lung carcinoma cells show unaltered net tumour growth rate but cause weight loss and shortened survival in syngeneic mice. Br. J. Cancer 67, 939–944 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Callaway, C. S. et al. IL-8 released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers 11, E1863 (2019).

    Article  PubMed  Google Scholar 

  96. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Hiratsuka, S. et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nat. Commun. 4, 1853 (2013).

    Article  PubMed  CAS  Google Scholar 

  101. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567, 249–252 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hiratsuka, S. et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10, 1349–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl Acad. Sci. USA 107, 21248–21255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Esposito, M., Guise, T. & Kang, Y. The biology of bone metastasis. Cold Spring Harb. Perspect. Med. 8, a031252 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, W. et al. Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene 38, 4540–4559 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Kalli, M. et al. Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci. Rep. 9, 978 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bruzzese, F. et al. Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res. 74, 3408–3417 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Li, C. et al. GDF15 promotes EMT and metastasis in colorectal cancer. Oncotarget 7, 860–872 (2016).

    PubMed  Google Scholar 

  113. Brown, D. A. et al. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin. Cancer Res. 9, 2642–2650 (2003).

    CAS  PubMed  Google Scholar 

  114. Lerner, L. et al. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J. Cachexia Sarcopenia Muscle 6, 317–324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsai, V. W., Brown, D. A. & Breit, S. N. Targeting the divergent TGFβ superfamily cytokine MIC-1/GDF15 for therapy of anorexia/cachexia syndromes. Curr. Opin. Support. Palliat. Care 12, 404–409 (2018).

    Article  PubMed  Google Scholar 

  116. Zugmaier, G. et al. Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res. 51, 3590–3594 (1991).

    CAS  PubMed  Google Scholar 

  117. Iguchi, H., Onuma, E., Sato, K., Sato, K. & Ogata, E. Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int. J. Cancer 94, 24–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Stewart, A. F. Clinical practice. Hypercalcemia associated with cancer. N. Engl. J. Med. 352, 373–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Guillen, C., Martinez, P., de Gortazar, A. R., Martinez, M. E. & Esbrit, P. Both N- and C-terminal domains of parathyroid hormone-related protein increase interleukin-6 by nuclear factor-κB activation in osteoblastic cells. J. Biol. Chem. 277, 28109–28117 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Pollock, J. H., Blaha, M. J., Lavish, S. A., Stevenson, S. & Greenfield, E. M. In vivo demonstration that parathyroid hormone and parathyroid hormone-related protein stimulate expression by osteoblasts of interleukin-6 and leukemia inhibitory factor. J. Bone Min. Res. 11, 754–759 (1996).

    Article  CAS  Google Scholar 

  121. Seto, D. N., Kandarian, S. C. & Jackman, R. W. A key role for leukemia inhibitory factor in C26 cancer cachexia. J. Biol. Chem. 290, 19976–19986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sakai, R. & Eto, Y. Involvement of activin in the regulation of bone metabolism. Mol. Cell Endocrinol. 180, 183–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Leto, G. et al. Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin. Exp. Metastasis 23, 117–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, J. L. et al. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 28, 1711–1723 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, S. J. et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl Acad. Sci. USA 102, 18117–18122 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Matzuk, M. M. et al. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc. Natl Acad. Sci. USA 91, 8817–8821 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morvan, F. et al. Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc. Natl Acad. Sci. USA 114, 12448–12453 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Obenauf, A. C. & Massague, J. Surviving at a distance: organ specific metastasis. Trends Cancer 1, 76–91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shakri, A. R. et al. Upregulation of ZIP14 and altered zinc homeostasis in muscles in pancreatic cancer cachexia. Cancers 12, E3 (2019).

    Article  PubMed  Google Scholar 

  130. Gupta, S. K., Shukla, V. K., Vaidya, M. P., Roy, S. K. & Gupta, S. Serum and tissue trace elements in colorectal cancer. J. Surg. Oncol. 52, 172–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Morikawa, K., Walker, S. M., Jessup, J. M. & Fidler, I. J. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 48, 1943–1948 (1988).

    CAS  PubMed  Google Scholar 

  132. Tseng, Y. C. et al. Preclinical investigation of the novel histone deacetylase inhibitor AR-42 in the treatment of cancer-induced cachexia. J. Natl Cancer Inst. 107, djv274 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  PubMed  CAS  Google Scholar 

  136. Burfeind, K. G., Michaelis, K. A. & Marks, D. L. The central role of hypothalamic inflammation in the acute illness response and cachexia. Semin. Cell Dev. Biol. 54, 42–52 (2016).

    Article  PubMed  Google Scholar 

  137. Braun, T. P. et al. Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J. Exp. Med. 208, 2449–2463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Anand, B. K. & Brobeck, J. R. Localization of a “feeding center” in the hypothalamus of the rat. Proc. Soc. Exp. Biol. Med. 77, 323–324 (1951).

    Article  CAS  PubMed  Google Scholar 

  139. Sohn, J. W. Network of hypothalamic neurons that control appetite. BMB Rep. 48, 229–233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ropelle, E. R. et al. A central role for neuronal adenosine 5’-monophosphate-activated protein kinase in cancer-induced anorexia. Endocrinology 148, 5220–5229 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Campos, C. A. et al. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui, P. et al. Metabolic derangements of skeletal muscle from a murine model of glioma cachexia. Skelet. Muscle 9, 3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berghoff, A. S., Lassmann, H., Preusser, M. & Hoftberger, R. Characterization of the inflammatory response to solid cancer metastases in the human brain. Clin. Exp. Metastasis 30, 69–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  146. Prado, C. M., Birdsell, L. A. & Baracos, V. E. The emerging role of computerized tomography in assessing cancer cachexia. Curr. Opin. Support. Palliat. Care 3, 269–275 (2009).

    Article  PubMed  Google Scholar 

  147. Amthor, H. et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc. Natl Acad. Sci. USA 104, 1835–1840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Temel, J. S. et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 17, 519–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Anker, M. S. et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J. Cachexia Sarcopenia Muscle 10, 22–34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Blum, D. et al. Validation of the consensus-definition for cancer cachexia and evaluation of a classification model–a study based on data from an international multicentre project (EPCRC-CSA). Ann. Oncol. 25, 1635–1642 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Vigano, A., Del Fabbro, E., Bruera, E. & Borod, M. The cachexia clinic: from staging to managing nutritional and functional problems in advanced cancer patients. Crit. Rev. Oncog. 17, 293–303 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. Ma, M. Kluger, G. Karsenty (CUIMC) and G. Miller (NYU) for helpful discussions. Funding was received from NCI CA231239, Pershing Square Sohn Prize, Irving Scholar Award, Interdisciplinary Research Initiatives Seed (IRIS) program, Developmental funds from NIH/NCI Cancer Center Support Grant P30CA013696 and The Irma T. Hirschl Monique Weill-Caulier Trust Award to S.A.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Swarnali Acharyya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks T. Guise, D. Lyden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A.K., Acharyya, S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer 20, 274–284 (2020). https://doi.org/10.1038/s41568-020-0251-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0251-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer