Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Article
  • Published:

Laxaphycins B5 and B6 from the cultured cyanobacterium UIC 10484

Abstract

Two laxaphycin type-B cyclic dodecapeptides, laxaphycins B5 and B6, were obtained from UIC 10484, a freshwater cf. Phormidium sp. Analysis using the 16S rRNA sequence found UIC 10484 to clade with UIC 10045, a known laxaphycin type-A and -B producer, and MS/MS analysis revealed the presence of two novel laxaphycin type-B compounds. The structures of the metabolites were elucidated using 2D NMR and MS/MS. The absolute configurations of the amino acids were determined by advanced Marfey’s analysis. Both metabolites were evaluated against the same three cancer cell lines. The IC50 of both laxaphycins B5 and B6 was near 1 μM against breast cancer MDA-MB-231, melanoma MDA-MB-435, and ovarian cancer OVCAR3 cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.

    Article  CAS  Google Scholar 

  2. Singh RK, Tiwari SP, Rai AK, Mohapatra TM. Cyanobacteria: an emerging source for drug discovery. J Antibiot. 2011;64:401–12.

    Article  CAS  Google Scholar 

  3. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod. 2001;64:907–10.

    Article  CAS  Google Scholar 

  4. Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30:631–7.

    Article  CAS  Google Scholar 

  5. Luo S, et al. Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045 Bioorg Med Chem. 2015;23:3153–62.

    Article  CAS  Google Scholar 

  6. Frankmölle WP, Knübel G, Moore RE, Patterson GM. Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa. II: Structures of laxaphycins A, B, D and E. J Antibiot. 1992;45:1458–66.

    Article  Google Scholar 

  7. MacMillan JB, Ernst-Russell MA, De Ropp JS, Molinski TF. Lobocyclamides A-C, lipopeptides from a cryptic cyanobacterial mat containing Lyngbya confervoides. J Org Chem. 2002;67:8210–5.

    Article  CAS  Google Scholar 

  8. Bonnard I, Rolland M, Salmon JM, Debiton E, Barthomeuf C, Banaigs B. Total structure and inhibition of tumor cell proliferation of laxaphycins. J Med Chem. 2007;50:1266–79.

    Article  CAS  Google Scholar 

  9. Luo S, et al. Trichormamides A and B with antiproliferative activity from the cultured freshwater cyanobacterium Trichormus sp. UIC 10339. J Nat Prod. 2014;77:1871–80.

    Article  CAS  Google Scholar 

  10. Cai W, Matthew S, Chen QY, Paul VJ, Luesch H. Discovery of new A- and B-type laxaphycins with synergistic anticancer activity. Bioorg Med Chem. 2018;26:2310–9.

    Article  CAS  Google Scholar 

  11. Maru N, Ohno O, Uemura D. Lyngbyacyclamides A and B, novel cytotoxic peptides from marine cyanobacteria Lyngbya sp. Tetrahedron Lett. 2010;51:6384–7.

    Article  CAS  Google Scholar 

  12. Harada K, et al. A Method Using LC/MS for Determination of Absolute Configuration of Constituent Amino Acids in Peptide–Advanced Marfey’s Method. Tetrahedron Lett. 1995;36:1515–8.

    Article  CAS  Google Scholar 

  13. Fujii K, Harada KI. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: Combination of Marfey’s method with mass spectrometry and its practical application. Anal Chem. 1997;69:5146–51.

    Article  CAS  Google Scholar 

  14. Fujii K, Ikai Y, Mayumi T, Oka H, Suzuki M, Harada KI. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: elucidation of limitations of Marfey’s method and of its separation mechanism. Anal Chem. 1997;69:3346–52.

    Article  CAS  Google Scholar 

  15. Luzzatto-Knaan T, et al. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. Elife. 2017;6:1–20.

    Article  Google Scholar 

  16. Sharp K, et al. Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol. 2009;75:2879–88.

    Article  CAS  Google Scholar 

  17. Murakami M, Suzuki S, Itou Y, Kodani S, Ishida K. New anabaenopeptins, carboxypeptidaze-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J Nat Prod. 2000;63:1280–2.

    Article  CAS  Google Scholar 

  18. Matthew S, Ross C, Paul VJ, Luesch H. Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron. 2008;64:4081–9.

    Article  CAS  Google Scholar 

  19. Gerwick WH, Jiang ZD, Agarwal SK, Farmer BT. Total structure of hormothamnin A, A toxic cyclic undecapeptide from the tropical marine cyanobacterium Hormothamnion enteromorphoides. Tetrahedron. 1992;48:2313–24.

    Article  CAS  Google Scholar 

  20. Bornancin L, et al. Structure and biological evaluation of new cyclic and acyclic laxaphycin-A type peptides. Bioorg Med Chem. 2019;27:1966–80.

    Article  CAS  Google Scholar 

  21. Grewe CJ. Cyanopeptoline und scytocyclamide: zyklische peptide 487 aus scytonema hofmanni PCC 7110 struktur und biologische Q8488 aktivität. Freiburg im Breisgau, Germany: Albert Ludwig University of Freiburg; 2005.

  22. Bornancin L, et al. Isolation and synthesis of laxaphycin b-type peptides: a case study and clues to their biosynthesis. Mar Drugs. 2015;13:7285–7300.

    Article  CAS  Google Scholar 

  23. Gbanktoto A, Vigo J, Dramane K, Banaigs B, Aina E, Salmon JM. Cytotoxic effect of laxaphycins A and B on human lymphoblastic cells (CCRF-CEM) using digitised videomicrofluorometry. Vivo. 2005;19:577–82.

    Google Scholar 

  24. Fujii K, Sivonen K, Nakana T, Harada K. Structural elucidation of cyanobacterial peptides encoded by peptide synthetase gene in Anabaena species. Tetrahedron. 2002;58:6863–71.

    Article  CAS  Google Scholar 

  25. Bister B, et al. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J Nat Prod. 2004;67:1755–7.

    Article  CAS  Google Scholar 

  26. Itou Y, Ishida K, Shin HJ, Murakami M. Oscillapeptins A to F, Serine Protease Inhibitors from the Three Strains of Oscilltoria agardhii. Tetrahedron. 1999;55:6871–82.

    Article  CAS  Google Scholar 

  27. Okumura HS, Philmus B, Portmann C, Hemscheidt TK. Homotyrosine-containing cyanopeptolins 880 and 960 and anabaenopeptins 908 and 915 from Planktothrix agardhii CYA 126/8. J Nat Prod. 2009;72:172–6.

    Article  CAS  Google Scholar 

  28. Guljamow A, et al. High-density cultivation of terrestrial Nostoc strains leads to reprogramming of secondary metabolome. Appl Environ Microbiol. 2017;83:1–15.

    Article  CAS  Google Scholar 

  29. Stein JR, ed. Handbook of phycological methods. Cambridge: Cambridge University Press; 1973.

  30. Chlipala G, Mo S, Carcache De Blanco EJ, Ito A, Bazarek S, Orjala J. Investigation of antimicrobial and protease-inhibitory activity from cultured cyanobacteria. Pharm Biol. 2009;47:53–60.

    Article  CAS  Google Scholar 

  31. May DS, et al. Merocyclophanes C and D from the cultured freshwater cyanobacterium nostoc sp. (UIC 10110). J Nat Prod. 2017;80:1073–80.

    Article  CAS  Google Scholar 

  32. Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol. 1997;63:3327–32.

    Article  Google Scholar 

  33. Ramos V, Morais J, Vasconcelos VM. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci Data. 2017;4:1–8.

    Article  Google Scholar 

  34. Garrity GeorgeM, Boone DavidR, Castenholz RW. Bergey’s manual of systematic bacteriology. 2nd ed. New York: Springer; 2001.

    Google Scholar 

  35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article  CAS  Google Scholar 

  36. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article  CAS  Google Scholar 

  37. Ren Y, et al. Cardiac glycoside constituents of streblus asper with potential antineoplastic activity. J Nat Prod. 2017;80:648–58.

    Article  CAS  Google Scholar 

  38. Kaiser K, Benner R. Hydrolysis-induced racemization of amino acids. Limnol Oceanogr Methods. 2005;3:318–25.

    Article  CAS  Google Scholar 

  39. Davidson I. Hydrolysis of samples for amino acid analysis. In: Smith BJ, editors. Protein Sequencing Protocols. Methods in molecular biology. vol 221, 2nd ed. Totowa, New Jersey: Humana Press Inc.; 2003. p. 111–22.

Download references

Acknowledgements

This research was supported by the NCI/NIH P01 CA12506 grant and The Office of the Director, NIH National Center for Complementary and Integrative Health (NCCIH) T32AT007533-05 training grant (PS). We thank Dr Jonathan Bisson and Dr Charlotte Simmer for their assistance using the Q-TOF mass spectrometer, Rojin Ahadi and Angel Antunez for isolating and culturing strain UIC 10484, Dr Ben Ramirez for his guidance using the UIC Center for Structure Biology NMR instrumentation, Dr Chen of the Research Resources Center’s Mass Spectrometry Core for use of the Agilent 6454 LC/Q-TOF, and Dr Young Jeong for access to their HPLC system. We’d also like to acknowledge the James R Fuchs lab of Ohio State University for synthesizing the NMeIle and 3OHLeu standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Orjala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to Professor William Fenical in recognition of his contributions to marine derived secondary metabolites

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, P., Krunic, A., Burdette, J.E. et al. Laxaphycins B5 and B6 from the cultured cyanobacterium UIC 10484. J Antibiot 73, 526–533 (2020). https://doi.org/10.1038/s41429-020-0301-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0301-x

Search

Quick links