Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation

Abstract

Different evidence has indicated metabolic rewiring as a necessity for pancreatic cancer (PC) growth, invasion, and chemotherapy resistance. A relevant role has been assigned to glucose metabolism. In particular, an enhanced flux through the Hexosamine Biosynthetic Pathway (HBP) has been tightly linked to PC development. Here, we show that enhancement of the HBP, through the upregulation of the enzyme Phosphoacetylglucosamine Mutase 3 (PGM3), is associated with the onset of gemcitabine (GEM) resistance in PC. Indeed, mRNA profiles of GEM sensitive and resistant patient-derived tumor xenografts (PDXs) indicate that PGM3 expression is specifically increased in GEM-resistant PDXs. Of note, PGM3 results also overexpressed in human PC tissues as compared to paired adjacent normal tissues and its higher expression in PC patients is associated with worse median overall survival (OS). Strikingly, genetic or pharmacological PGM3 inhibition reduces PC cell growth, migration, invasion, in vivo tumor growth and enhances GEM sensitivity. Thus, combined treatment between a specific inhibitor of PGM3, named FR054, and GEM results in a potent reduction of xenograft tumor growth without any obvious side effects in normal tissues. Mechanistically, PGM3 inhibition, reducing protein glycosylation, causes a sustained Unfolded Protein Response (UPR), a significant attenuation of the pro-tumorigenic Epidermal Growth Factor Receptor (EGFR)-Akt axis, and finally cell death. In conclusion this study identifies the HBP as a metabolic pathway involved in GEM resistance and provides a strong rationale for a PC therapy addressing the combined treatment with the PGM3 inhibitor and GEM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PGM3 is upregulated in GEM resistant PDXs and negatively correlated with prognosis in PC.
Fig. 2: PGM3 contributed proliferation, invasion, migration, chemoresistance in vitro and tumor growth in mice.
Fig. 3: Targeting PGM3 induces cell growth arrest and apoptosis.
Fig. 4: FR054 synergizes with GEM and suppresses in vitro and in vivo proliferation.
Fig. 5: FR054 induces a sustained activation of UPR.
Fig. 6: FR054 inhibits EGFR-Akt axis.
Fig. 7: IHC and HE staining of PANC-1 and PDX-5 xenograft tumors.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  PubMed  Google Scholar 

  3. Binenbaum Y, Na'ara S, Gil Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat. 2015;23:55–68.

    Article  PubMed  Google Scholar 

  4. Amrutkar M, Gladhaug IP. Pancreatic cancer chemoresistance to gemcitabine. Cancers. 2017;9:157.

    Article  PubMed Central  CAS  Google Scholar 

  5. de Sousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharm. 2014;741:8–16.

    Article  CAS  Google Scholar 

  6. Luo W, Yang G, Qiu J, Luan J, Zhang Y, You L, et al. Novel discoveries targeting gemcitabine-based chemoresistance and new therapies in pancreatic cancer: How far are we from the destination? Cancer Med. 2019;8:6403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen R, Lai LA, Sullivan Y, Wong M, Wang L, Riddell J, et al. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Sci Rep. 2017;7:7950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 2017;32:392.

    Article  CAS  PubMed  Google Scholar 

  9. Tadros S, Shukla SK, King RJ, Gunda V, Vernucci E, Abrego J, et al. De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res. 2017;77:5503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaziri-Gohar A, Zarei M, Brody JR, Winter JM. Metabolic dependencies in pancreatic cancer. Front Oncol. 2018;8:617.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA. 2013;110:3919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiaradonna F, Ricciardiello F, Palorini R. The Nutrient-sensing hexosamine biosynthetic pathway as the hub of cancer metabolic rewiring. Cells. 2018;7:E53.

    Article  PubMed  CAS  Google Scholar 

  14. Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 2019;17:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fang B, Miller MW. Use of galactosyltransferase to assess the biological function of O-linked N-acetyl-d-glucosamine: a potential role for O-GlcNAc during cell division. Exp Cell Res. 2001;263:243–53.

    Article  CAS  PubMed  Google Scholar 

  16. Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13:270–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chatham JC, Marchase RB. Protein O-GlcNAcylation: a critical regulator of the cellular response to stress. Curr Signal Transduct Ther. 2010;5:49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu C, Li J. O-GlcNAc: a sweetheart of the cell cycle and DNA damage response. Front Endocrinol. 2018;9:415.

    Article  Google Scholar 

  19. Munkley J. The glycosylation landscape of pancreatic cancer. Oncol Lett. 2019;17:2569–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Paiotta A, D'Orazio G, Palorini R, Ricciardiello F, Zoia L, Votta G, et al. Design, synthesis, and preliminary biological evaluation of GlcNAc‐6P analogues for the modulation of phosphoacetylglucosamine mutase 1 (AGM1/PGM3). Eur JOC. 2018;2018:1946–52.

    CAS  Google Scholar 

  21. Ricciardiello F, Votta G, Palorini R, Raccagni I, Brunelli L, Paiotta A, et al. Inhibition of the hexosamine biosynthetic pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis. 2018;9:377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rodrigues JG, Balmana M, Macedo JA, Pocas J, Fernandes A, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. 2018;333:46–57.

    Article  CAS  PubMed  Google Scholar 

  23. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol. 1991;9:491–8.

    Article  CAS  PubMed  Google Scholar 

  24. Avril T, Vauleon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis. 2017;6:e373.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Palam LR, Gore J, Craven KE, Wilson JL, Korc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 2015;6:e1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA. 2011;108:11332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez-Sambrooks C, Shrimal S, Khodier C, Flaherty DP, Rinis N, Charest JC, et al. Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol. 2016;12:1023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian W, Li J, Chen K, Jiang Z, Cheng L, Zhou C, et al. Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer. Life Sci. 2018;208:253–61.

    Article  CAS  PubMed  Google Scholar 

  31. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Qiu J, et al. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. J Exp Clin Cancer Res. 2018;37:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G. et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:eaan2507.

    Article  PubMed  CAS  Google Scholar 

  34. Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, et al. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 2013;73:5277–87.

    Article  CAS  PubMed  Google Scholar 

  35. Ma Z, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem. 2013;288:15121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olivier-Van Stichelen S, Guinez C, Mir AM, Perez-Cervera Y, Liu C, Michalski JC, et al. The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of beta-catenin and cell proliferation. Am J Physiol Endocrinol Metab. 2012;302:E417–24.

    Article  CAS  PubMed  Google Scholar 

  37. de Queiroz RM, Oliveira IA, Piva B, Bouchuid Catao F, da Costa Rodrigues B, da Costa, et al. Hexosamine biosynthetic pathway and glycosylation regulate cell migration in melanoma cells. Front Oncol. 2019;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Namba T, Kodama R. Avarol induces apoptosis in pancreatic ductal adenocarcinoma cells by activating PERK-eIF2alpha-CHOP signaling. Mar Drugs. 2015;13:2376–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dauer P, Sharma NS, Gupta VK, Nomura A, Dudeja V, Saluja A, et al. GRP78-mediated antioxidant response and ABC transporter activity confers chemoresistance to pancreatic cancer cells. Mol Oncol. 2018;12:1498–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thakur PC, Miller-Ocuin JL, Nguyen K, Matsuda R, Singhi AD, Zeh HJ, et al. Inhibition of endoplasmic-reticulum-stress-mediated autophagy enhances the effectiveness of chemotherapeutics on pancreatic cancer. J Transl Med. 2018;16:190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nagaraj NS, Washington MK, Merchant NB. Combined blockade of Src kinase and epidermal growth factor receptor with gemcitabine overcomes STAT3-mediated resistance of inhibition of pancreatic tumor growth. Clin Cancer Res. 2011;17:483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 2012;180:599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang G, Wang H, Feng M, You L, Zheng L, Zhang T, et al. Integrated analysis of gene expression and methylation profiles of novel pancreatic cancer cell lines with highly metastatic activity. Sci China Life Sci. 2019;62:791–806.

    Article  CAS  PubMed  Google Scholar 

  45. Du Y, Liu Z, You L, Hou P, Ren X, Jiao T, et al. Pancreatic cancer progression relies upon mutant p53-induced oncogenic signaling mediated by NOP14. Cancer Res. 2017;77:2661–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FC was supported by grants from MAECI (Executive Programme of Scientific and Technological Cooperation Italy-China 2019–2021, #CN19GR03), from Associazione Italiana per la Ricerca sul Cancro (A.I.R.C., IG2014 Id.15364) and Fondo individuale FFABBR_NAT 2017 (MIUR, Italy). TZ was supported by grants from Key Projects of International Scientific and Technological Innovation Cooperation Between Chinese and Italian Governments (2018YFE0118600), from the National Natural Science Foundation of China (No. 81772639), from Natural Science Foundation of Beijing (No. 7192157) and CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2016-I2M-1-001). YZ was supported by grants from Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (No. 2018PT32014). FR is supported by fellowship from MIUR. RP and HDV were supported by fellowship from MIUR and National Brazilian Institution of Science (CAPES 9281-13-4), respectively. We thank Neil Campbell for English editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taiping Zhang, Yupei Zhao or Ferdinando Chiaradonna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lead contact: Ferdinando Chiaradonna

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricciardiello, F., Gang, Y., Palorini, R. et al. Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene 39, 4103–4117 (2020). https://doi.org/10.1038/s41388-020-1260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1260-1

This article is cited by

Search

Quick links