Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic heterogeneity in bladder cancer: challenges and possible solutions to improve outcomes

Abstract

Histological and molecular analyses of urothelial carcinoma often reveal intratumoural and intertumoural heterogeneity at the genomic, transcriptional and cellular levels. Despite the clonal initiation of the tumour, progression and metastasis often arise from subclones that can develop naturally or during therapy, resulting in molecular alterations with a heterogeneous distribution. Variant histologies in tumour tissues that have developed distinct morphological characteristics divergent from urothelial carcinoma are extreme examples of tumour heterogeneity. Ultimately, heterogeneity contributes to drug resistance and relapse after therapy, resulting in poor survival outcomes. Mutation profile differences between patients with muscle-invasive and metastatic urothelial cancer (interpatient heterogeneity) probably contribute to variability in response to chemotherapy and immunotherapy as first-line treatments. Heterogeneity can occur on multiple levels and averaging or normalizing these alterations is crucial for clinical trial and drug design to enable appropriate therapeutic targeting. Identification of the extent of heterogeneity might shape the choice of monotherapy or additional combination treatments to target different drivers and genetic events. Identification of the lethal tumour cell clones is required to improve survival of patients with urothelial carcinoma.

Key points

  • Bladder cancers have a high total mutational burden and considerable intratumoural and intertumoural heterogeneity at the genomic, transcriptional and cellular levels that remain difficult to quantify.

  • Heterogeneity might be driven by genomic events initiated by APOBEC enzymes and selection pressure from therapeutic interventions, which both drive tumour evolution.

  • Bladder tumours can be categorized into different subtypes on the basis of gene expression signatures, but these molecular subtypes might be unstable and different subtypes can occur within the same tumour causing intratumoural heterogeneity.

  • Variant tumour histologies are the morphological extreme of tumour heterogeneity and include glandular, squamous, nested, plasmacytoid, micropapillary, sarcomatoid and small-cell carcinoma.

  • Tumour heterogeneity might affect treatment efficacy, for example, of neoadjuvant chemotherapy and immune checkpoint inhibitors, as well as targeted therapy, for example, when individual actionable mutations only occur in a fraction of the tumour.

  • Biomarkers to select personalized treatments in precision medicine approaches will likely shape future clinical trial design, but their validity might be affected by heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different types of heterogeneity found in bladder cancer.
Fig. 2: Tumour evolution with emergence of distinct tumour subtypes.
Fig. 3: Variant histology of urothelial carcinoma.

Similar content being viewed by others

References

  1. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  Google Scholar 

  2. Lamy, P. et al. Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res. 76, 5894–5906 (2016).

    CAS  PubMed  Google Scholar 

  3. da Costa, J. B. et al. Molecular tumor heterogeneity in muscle invasive bladder cancer: biomarkers, subtypes, and implications for therapy. Urol. Oncol. https://doi.org/10.1016/j.urolonc.2018.11.015 (2018).

    Article  PubMed  Google Scholar 

  4. Warrick, J. I. et al. Intratumoral heterogeneity of bladder cancer by molecular subtypes and histologic variants. Eur. Urol. 75, 18–22 (2019).

    CAS  PubMed  Google Scholar 

  5. Ma, G. et al. Precision medicine and bladder cancer heterogeneity. Bull. Cancer 105, 925–931 (2018).

    PubMed  Google Scholar 

  6. Liu, D. et al. Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nat. Commun. 8, 2193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS  PubMed  Google Scholar 

  8. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Russo, M. et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 6, 147–153 (2016).

    CAS  PubMed  Google Scholar 

  10. Marks, E., Rizvi, S. M., Sarwani, N., Yang, Z. & El-Deiry, W. S. A case of heterogeneous sensitivity to panitumumab in cetuximab-refractory colorectal adenocarcinoma metastases. Cancer Biol. Ther. 16, 377–382 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur. Urol. 71, 447–461 (2017).

    PubMed  Google Scholar 

  13. Dyrskjøt, L. & Ingersoll, M. A. Biology of nonmuscle-invasive bladder cancer: pathology, genomic implications, and immunology. Curr. Opin. Urol. 28, 598–603 (2018).

    PubMed  Google Scholar 

  14. Hurst, C. D. & Knowles, M. A. Mutational landscape of non-muscle-invasive bladder cancer. Urol. Oncol. https://doi.org/10.1016/j.urolonc.2018.10.015 (2018).

    Article  PubMed  Google Scholar 

  15. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

    PubMed  Google Scholar 

  17. Faltas, B. M. et al. Clonal evolution of chemotherapy-resistant urothelial carcinoma. Nat. Genet. 48, 1490–1499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    CAS  PubMed  Google Scholar 

  20. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Google Scholar 

  21. Findlay, J. M. et al. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat. Commun. 7, 11111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. McQuerry, J. A., Chang, J. T., Bowtell, D. D. L., Cohen, A. & Bild, A. H. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J. Mol. Med. 95, 1167–1178 (2017).

    CAS  PubMed  Google Scholar 

  23. Meeks, J. J., Goldkorn, A., Aparicio, A. M. & McConkey, D. J. Development of a translational medicine protocol for an NCTN genitourinary clinical trial: critical steps, common pitfalls and a basic guide to translational clinical research. Urol. Oncol. 37, 313–317 (2019).

    PubMed  Google Scholar 

  24. Sharma, M., Gogia, A., Deo, S. S. V. & Mathur, S. Role of rebiopsy in metastatic breast cancer at progression. Curr. Probl. Cancer 43, 438–442 (2019).

    PubMed  Google Scholar 

  25. Hench, I. B., Hench, J. & Tolnay, M. Liquid biopsy in clinical management of breast, lung, and colorectal cancer. Front. Med. 5, 9 (2018).

    Google Scholar 

  26. Christensen, E. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J. Clin. Oncol. 37, 1547–1557 (2019).

    CAS  PubMed  Google Scholar 

  27. Thierry, A. R. et al. Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment. Ann. Oncol. 28, 2149–2159 (2017).

    CAS  PubMed  Google Scholar 

  28. Agarwal, N. et al. Characterization of metastatic urothelial carcinoma via comprehensive genomic profiling of circulating tumor DNA. Cancer 124, 2115–2124 (2018).

    CAS  PubMed  Google Scholar 

  29. Paweletz, C. P. et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin. Cancer Res. 22, 915–922 (2016).

    CAS  PubMed  Google Scholar 

  30. Barata, P. C. et al. Next-generation sequencing (NGS) of cell-free circulating tumor DNA and tumor tissue in patients with advanced urothelial cancer: a pilot assessment of concordance. Ann. Oncol. 28, 2458–2463 (2017).

    CAS  PubMed  Google Scholar 

  31. Pal, S. K. et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 Inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 8, 812–821 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oellerich, M. et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit. Rev. Clin. Lab. Sci. 54, 205–218 (2017).

    CAS  PubMed  Google Scholar 

  33. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Nordentoft, I. et al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep. 7, 1649–1663 (2014).

    CAS  PubMed  Google Scholar 

  35. Cha, E. K. et al. Branched evolution and intratumor heterogeneity of urothelial carcinoma of the bladder. J. Clin. Oncol. 32, 293–293 (2014).

    Google Scholar 

  36. Prandi, D. et al. Unraveling the clonal hierarchy of somatic genomic aberrations. Genome Biol. 15, 439 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Thomsen, M. B. H. et al. Spatial and temporal clonal evolution during development of metastatic urothelial carcinoma. Mol. Oncol. 10, 1450–1460 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556 (2018).

    Google Scholar 

  41. Moris, A., Murray, S. & Cardinaud, S. AID and APOBECs span the gap between innate and adaptive immunity. Front. Microbiol. 5, 534 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Burns, M. B., Temiz, N. A. & Harris, R. S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet. 45, 977–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    CAS  PubMed  Google Scholar 

  47. Blanes, A., Rubio, J., Sanchez-Carrillo, J. J. & Diaz-Cano, S. J. Coexistent intraurothelial carcinoma and muscle-invasive urothelial carcinoma of the bladder: clonality and somatic down-regulation of DNA mismatch repair. Hum. Pathol. 40, 988–997 (2009).

    CAS  PubMed  Google Scholar 

  48. Kazanov, M. D. et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions. Cell Rep. 13, 1103–1109 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoopes, J. I. et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication. Cell Rep. 14, 1273–1282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Seplyarskiy, V. B. et al. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res. 26, 174–182 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nowarski, R. & Kotler, M. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion. Cancer Res. 73, 3494–3498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Okeoma, C. M., Lovsin, N., Peterlin, B. M. & Ross, S. R. APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445, 927–930 (2007).

    CAS  PubMed  Google Scholar 

  53. Smith, H. C., Bennett, R. P., Kizilyer, A., McDougall, W. M. & Prohaska, K. M. Functions and regulation of the APOBEC family of proteins. Semin. Cell Dev. Biol. 23, 258–268 (2012).

    CAS  PubMed  Google Scholar 

  54. Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2, e1601737 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    PubMed  Google Scholar 

  56. Choi, W. et al. Genetic alterations in the molecular subtypes of bladder cancer: illustration in the cancer genome atlas dataset. Eur. Urol. 72, 354–365 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    PubMed  Google Scholar 

  58. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Seiler, R. et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur. Urol. 72, 544–554 (2017).

    CAS  PubMed  Google Scholar 

  60. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 18, 312–322 (2017).

    CAS  PubMed  Google Scholar 

  63. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Google Scholar 

  65. Dyrskjøt, L. et al. A molecular signature in superficial bladder carcinoma predicts clinical outcome. Clin. Cancer Res. 11, 4029–4036 (2005).

    PubMed  Google Scholar 

  66. Dyrskjøt, L. et al. Prognostic impact of a 12-gene progression score in non-muscle-invasive bladder cancer: a prospective multicentre validation study. Eur. Urol. 72, 461–469 (2017).

    PubMed  Google Scholar 

  67. Sjödahl, G. et al. Discordant molecular subtype classification in the basal-squamous subtype of bladder tumors and matched lymph-node metastases. Mod. Pathol. 31, 1869–1881 (2018).

    PubMed  Google Scholar 

  68. Thomsen, M. B. H. et al. Comprehensive multiregional analysis of molecular heterogeneity in bladder cancer. Sci. Rep. 7, 11702 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Ma, S. et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biol. 19, 142 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    CAS  PubMed  Google Scholar 

  71. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Amin, M. B. Histological variants of urothelial carcinoma: diagnostic, therapeutic and prognostic implications. Mod. Pathol. 22, S96–S118 (2009).

    PubMed  Google Scholar 

  73. Linder, B. J. et al. The impact of histological reclassification during pathology re-review — evidence of a Will Rogers effect in bladder cancer? J. Urol. 190, 1692–1696 (2013).

    PubMed  Google Scholar 

  74. Shah, R. B., Montgomery, J. S., Montie, J. E. & Kunju, L. P. Variant (divergent) histologic differentiation in urothelial carcinoma is under-recognized in community practice: impact of mandatory central pathology review at a large referral hospital. Urol. Oncol. 31, 1650–1655 (2013).

    PubMed  Google Scholar 

  75. Moch, H., Humphrey, P. A., Ulbright, T. M. & Reuter, V. E. WHO Classification of Tumours of the Urinary System and Male Genital Organs Vol. 4, 77–133 (International Agency for Research on Cancer, 2016).

  76. Humphrey, P. A., Moch, H., Cubilla, A. L., Ulbright, T. M. & Reuter, V. E. The 2016 WHO classification of tumours of the urinary system and male genital organs — part B: prostate and bladder tumours. Eur. Urol. 70, 106–119 (2016).

    PubMed  Google Scholar 

  77. Hovelson, D. H. et al. Targeted DNA and RNA sequencing of paired urothelial and squamous bladder cancers reveals discordant genomic and transcriptomic events and unique therapeutic implications. Eur. Urol. 74, 741–753 (2018).

    CAS  PubMed  Google Scholar 

  78. Blochin, E. B., Park, K. J., Tickoo, S. K., Reuter, V. E. & Al-Ahmadie, H. Urothelial carcinoma with prominent squamous differentiation in the setting of neurogenic bladder: role of human papillomavirus infection. Mod. Pathol. 25, 1534–1542 (2012).

    PubMed  Google Scholar 

  79. Chapman-Fredricks, J. R. et al. High-risk human papillomavirus DNA detected in primary squamous cell carcinoma of urinary bladder. Arch. Pathol. Lab. Med. 137, 1088–1093 (2013).

    CAS  PubMed  Google Scholar 

  80. Solomon, J. P. et al. Challenges in the diagnosis of urothelial carcinoma variants: can emerging molecular data complement pathology review? Urology 102, 7–16 (2016).

    PubMed  Google Scholar 

  81. Vail, E. et al. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder. Ann. Diagn. Pathol. 19, 301–305 (2015).

    PubMed  Google Scholar 

  82. Lopez-Beltran, A. et al. Variants and new entities of bladder cancer. Histopathology 74, 77–96 (2019).

    PubMed  Google Scholar 

  83. Dhall, D., Al-Ahmadie, H. & Olgac, S. Nested variant of urothelial carcinoma. Arch. Pathol. Lab. Med. 131, 1725–1727 (2007).

    PubMed  Google Scholar 

  84. Volmar, K. E., Chan, T. Y., De Marzo, A. M. & Epstein, J. I. Florid von Brunn nests mimicking urothelial carcinoma: a morphologic and immunohistochemical comparison to the nested variant of urothelial carcinoma. Am. J. Surg. Pathol. 27, 1243–1252 (2003).

    PubMed  Google Scholar 

  85. Zhong, M. et al. Distinguishing nested variants of urothelial carcinoma from benign mimickers by TERT promoter mutation. Am. J. Surg. Pathol. 39, 127–131 (2015).

    PubMed  Google Scholar 

  86. Al-Ahmadie, H. A. et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat. Genet. 48, 356–358 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Keck, B. et al. The plasmacytoid carcinoma of the bladder–rare variant of aggressive urothelial carcinoma. Int. J. Cancer 129, 346–354 (2011).

    CAS  PubMed  Google Scholar 

  88. Nigwekar, P. et al. Plasmacytoid urothelial carcinoma: detailed analysis of morphology with clinicopathologic correlation in 17 cases. Am. J. Surg. Pathol. 33, 417–424 (2009).

    PubMed  Google Scholar 

  89. Dayyani, F. et al. Plasmacytoid urothelial carcinoma, a chemosensitive cancer with poor prognosis, and peritoneal carcinomatosis. J. Urol. 189, 1656–1661 (2013).

    PubMed  Google Scholar 

  90. Kaimakliotis, H. Z. et al. Plasmacytoid bladder cancer: variant histology with aggressive behavior and a new mode of invasion along fascial planes. Urology 83, 1112–1116 (2014).

    PubMed  Google Scholar 

  91. Amin, M. B. et al. Micropapillary variant of transitional cell carcinoma of the urinary bladder. Histologic pattern resembling ovarian papillary serous carcinoma. Am. J. Surg. Pathol. 18, 1224–1232 (1994).

    CAS  PubMed  Google Scholar 

  92. Nassar, H. et al. Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod. Pathol. 17, 1045–1050 (2004).

    CAS  PubMed  Google Scholar 

  93. Luna-More, S., Gonzalez, B., Acedo, C., Rodrigo, I. & Luna, C. Invasive micropapillary carcinoma of the breast. A new special type of invasive mammary carcinoma. Pathol. Res. Pract. 190, 668–674 (1994).

    CAS  PubMed  Google Scholar 

  94. Ching, C. B. et al. HER2 gene amplification occurs frequently in the micropapillary variant of urothelial carcinoma: analysis by dual-color in situ hybridization. Mod. Pathol. 24, 1111–1119 (2011).

    CAS  PubMed  Google Scholar 

  95. Ross, J. S. et al. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carcinoma. Clin. Cancer Res. 20, 68–75 (2014).

    CAS  PubMed  Google Scholar 

  96. Isharwal, S. et al. Intratumoral heterogeneity of ERBB2 amplification and HER2 expression in micropapillary urothelial carcinoma. Hum. Pathol. 77, 63–69 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 31, 3133–3140 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fleischmann, A., Rotzer, D., Seiler, R., Studer, U. E. & Thalmann, G. N. Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur. Urol. 60, 350–357 (2011).

    CAS  PubMed  Google Scholar 

  99. Lopez-Beltran, A. et al. Carcinosarcoma and sarcomatoid carcinoma of the bladder: clinicopathological study of 41 cases. J. Urol. 159, 1497–1503 (1998).

    CAS  PubMed  Google Scholar 

  100. Sanfrancesco, J. et al. Sarcomatoid urothelial carcinoma of the bladder: analysis of 28 cases with emphasis on clinicopathologic features and markers of epithelial-to-mesenchymal transition. Arch. Pathol. Lab. Med. 140, 543–551 (2016).

    PubMed  Google Scholar 

  101. Sung, M. T. et al. Histogenesis of sarcomatoid urothelial carcinoma of the urinary bladder: evidence for a common clonal origin with divergent differentiation. J. Pathol. 211, 420–430 (2007).

    PubMed  Google Scholar 

  102. Guo, C. C. et al. Dysregulation of EMT drives the progression to clinically aggressive sarcomatoid bladder cancer. Cell Rep. 27, 1781–1793.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chang, M. T. et al. Small cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis. Clin. Cancer Res. 24, 1965–1973 (2018).

    CAS  PubMed  Google Scholar 

  105. Kim, P. H. et al. Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder. Eur. Urol. 67, 198–201 (2015).

    PubMed  Google Scholar 

  106. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sjödahl, G., Eriksson, P., Liedberg, F. & Höglund, M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J. Pathol. 242, 113–125 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Batista da Costa, J. et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 25, 3908–3920 (2019).

    PubMed  Google Scholar 

  109. Gopalan, A. et al. Urachal carcinoma: a clinicopathologic analysis of 24 cases with outcome correlation. Am. J. Surg. Pathol. 33, 659–668 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. Jordan, E. et al. Assessment of genomic alterations in bladder adenocarcinoma and urachal adenocarcinoma. Eur. J. Cancer 51, S530–S530 (2015).

    Google Scholar 

  111. Collazo-Lorduy, A. et al. Urachal carcinoma shares genomic alterations with colorectal carcinoma and may respond to epidermal growth factor inhibition. Eur. Urol. 70, 771–775 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Reis, H. et al. Pathogenic and targetable genetic alterations in 70 urachal adenocarcinomas. Int. J. Cancer 143, 1764–1773 (2018).

    CAS  PubMed  Google Scholar 

  113. Saunders, N. A. et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol. Med. 4, 675–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Garraway, L. A. & Janne, P. A. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov. 2, 214–226 (2012).

    CAS  PubMed  Google Scholar 

  115. Steinbichler, T. B. et al. Therapy resistance mediated by cancer stem cells. Semin. Cancer Biol. 53, 156–167 (2018).

    CAS  PubMed  Google Scholar 

  116. Guo, C. C. et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur. Urol. 70, 611–620 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Meeks, J. J. et al. A systematic review of neoadjuvant and adjuvant chemotherapy for muscle-invasive bladder cancer. Eur. Urol. 62, 523–533 (2012).

    CAS  PubMed  Google Scholar 

  118. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    CAS  PubMed  Google Scholar 

  119. Plimack, E. R. et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. 32, 1895–1901 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    PubMed  Google Scholar 

  121. Lotan, Y. et al. Molecular subtyping of clinically localized urothelial carcinoma reveals lower rates of pathological upstaging at radical cystectomy among luminal tumors. Eur. Urol. 76, 200–206 (2019).

    PubMed  Google Scholar 

  122. The ASCO Post. FDA grants accelerated approval to erdafitinib for metastatic urothelial carcinoma. The ASCO Post https://www.ascopost.com/News/59934 (2019).

  123. Loriot, Y. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 381, 338–348 (2019).

    CAS  PubMed  Google Scholar 

  124. Pouessel, D. et al. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment. Ann. Oncol. 27, 1311–1316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Goldstein, J. T. et al. Genomic activation of PPARG reveals a candidate therapeutic axis in bladder cancer. Cancer Res. 77, 6987–6998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Siefker-Radtke, A. & Curti, B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat. Rev. Urol. 15, 112–124 (2018).

    CAS  PubMed  Google Scholar 

  127. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 6, 3353–3360 (2018).

    Google Scholar 

  129. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02177695 (2019).

  130. Flaig, T. W. et al. SWOG S1314: a randomized phase II study of co-expression extrapolation (COXEN) with neoadjuvant chemotherapy for localized, muscle-invasive bladder cancer. J. Clin. Oncol. 37, 4506–4506 (2019).

    Google Scholar 

  131. Christensen, E. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J. Clin. Oncol. 37, 1547–1557 (2019).

    CAS  PubMed  Google Scholar 

  132. Hurst, C. D. et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell 32, 701–715.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vandekerkhove, G. et al. Circulating tumor DNA reveals clinically actionable somatic genome of metastatic bladder cancer. Clin. Cancer Res. 23, 6487–6497 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Leo and Anne Albert Institute of Bladder Cancer Research. J.J.M. is supported by a VA Merit Award (BX003692-01) and a Department of Defense Grant (W81XWH-18-0257). J.J.M and L.D. are supported by an award from the Leo and Anne Albert Institute of Bladder Cancer Research. H.A. is supported by a Sloan Kettering Institute for Cancer Research Cancer Center Support Grant P30CA008748 and SPORE in Bladder Cancer P50CA221745. B.M.F. is supported by the Department of Defense CDMRP Career Development Award (grant CA160212). D.J.D. is supported in part by RSG 17-233-01-TBE from the American Cancer Society. B.L.W. is supported by an American Urological Association Research Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

J.J.M., H.A., B.M.F., J.A.T.III, T.W.F., E.C., B.L.W., D.J.M., L.D. researched data for the article and wrote the manuscript. All authors made substantial contributions to discussion of the article content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joshua J. Meeks.

Ethics declarations

Competing interests

B.M.F. received grant/research support from Eli Lilly and Company and participated in an Advisory Board for Immunomedics. J.J.M. received research support from Epizyme, Tesaro and Abbvie, is a consultant for Ferring and AstraZeneca, and participated in advisory boards for Cold Genesys and Janssen. H.A. is a consultant for AstraZeneca/MedImmune, Bristol-Myers Squibb and EMD Serono. L.D. received research support from Ferring and Natera, and is a consultant for Ferring.

Additional information

Peer review information

Nature Reviews Urology thanks P. Black, R. Bryan and A. Hartmann for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeks, J.J., Al-Ahmadie, H., Faltas, B.M. et al. Genomic heterogeneity in bladder cancer: challenges and possible solutions to improve outcomes. Nat Rev Urol 17, 259–270 (2020). https://doi.org/10.1038/s41585-020-0304-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0304-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer