Skip to main content
Log in

A Review Towards Hyperspectral Imaging for Real-Time Quality Control of Food Products with an Illustrative Case Study of Milk Powder Production

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Hyperspectral imaging (HSI) is a relatively fast analytical method that is being used for quality testing of natural foods (e.g. fruits and vegetables). This method has been proposed to replace existing manual off-line sensory quality tests of processed foods (e.g. milk powder). This article reviews the current status of HSI for monitoring natural and processed food product quality and identifies key knowledge gaps in recent literature that may be responsible for the limited success of HSI, especially for processed foods (e.g. milk powder) quality testing at the lab and industrial scales. Furthermore, various strategies to cope with challenges associated with limited HSI success are discussed. From the current literature, HSI has been used primarily as an off-line machine vision technique for quality testing to replace existing manual sensory tests. However, HSI lacks scenarios of testing and controlling product quality in real time, especially for processed foods. Little has been reported to date on generalising suitable design choices for the ‘successful’ implementation of HSI. To address this deficiency, the potential of HSI to achieve real-time quality control was examined using the milk powder production process as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achata, E. M., Esquerre, C., Gowen, A. A., & O'Donnell, C. P. (2018). Feasibility of near infrared and Raman hyperspectral imaging combined with multivariate analysis to assess binary mixtures of food powders. Powder Technology, 336, 555–566.

    Article  CAS  Google Scholar 

  • Amigo, J. M., Martí, I., & Gowen, A. (2013). Chapter 9 - Hyperspectral imaging and chemometrics: a perfect combination for the analysis of food structure, composition and quality. In M. Federico (Ed.), Data handling in science and technology (Vol. 28, pp. 343–370). Elsevier.

  • Andresen, M. S., Dissing, B. S., & Løje, H. (2013). Quality assessment of butter cookies applying multispectral imaging. Food Science & Nutrition, 1(4), 315–323.

    Article  Google Scholar 

  • Bai, S. H., Tahmasbian, I., Zhou, J., Nevenimo, T., Hannet, G., Walton, D., Randall, B., Gama, T., & Wallace, H. M. (2018). A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Computers and Electronics in Agriculture, 151, 492–500.

    Article  Google Scholar 

  • Bannon, D. J. N. p. (2009). "Hyperspectral imaging: cubes and slices." 3(11): 627.

  • Baranowski, P., Mazurek, W., & Pastuszka-Woźniak, J. (2013). Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data. Postharvest Biology and Technology, 86, 249–258.

    Article  Google Scholar 

  • Barreto, A., Cruz-Tirado, J. P., Siche, R., & Quevedo, R. (2018). Determination of starch content in adulterated fresh cheese using hyperspectral imaging. Food Bioscience, 21, 14–19.

    Article  CAS  Google Scholar 

  • Behrend, C. J., Tarnowski, C. P., & Morris, M. D. (2002). Identification of outliers in hyperspectral Raman image data by nearest neighbor comparison. Applied Spectroscopy, 56(11), 1458–1461.

    Article  CAS  Google Scholar 

  • Burger, J., & Geladi, P. (2005). Hyperspectral NIR image regression part I: calibration and correction. Journal of Chemometrics, 19(5–7), 355–363.

    Article  CAS  Google Scholar 

  • Bylund, G. (2003). Dairy processing handbook, Tetra Pak Processing Systems AB.

  • Cannistraci, C. V., Montevecchi, F. M., & Alessio, M. (2009). Median-modified Wiener filter provides efficient denoising, preserving spot edge and morphology in 2-DE image processing. Proteomics, 9(21), 4908–4919.

    Article  CAS  PubMed  Google Scholar 

  • Caporaso, N., Whitworth, M. B., Grebby, S., & Fisk, I. D. (2018). Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Research International, 106, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, W. S., Devlin, S. J., & Grosse, E. (1988). Regression by local fitting: methods, properties, and computational algorithms. Journal of Econometrics, 37(1), 87–114.

    Article  Google Scholar 

  • El Jabri, M., Sanchez, M. P., Trossat, P., Laithier, C., Wolf, V., Grosperrin, P., Beuvier, E., Rolet-Répécaud, O., Gavoye, S., Gaüzère, Y., Belysheva, O., Notz, E., Boichard, D., & Delacroix-Buchet, A. (2019). Comparison of Bayesian and partial least squares regression methods for mid-infrared prediction of cheese-making properties in Montbeliarde cows. Journal of Dairy Science, 102(8), 6943–6958.

    Article  PubMed  CAS  Google Scholar 

  • ElMasry, G., Sun, D.-W., & Allen, P. (2012). Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. Journal of Food Engineering, 110(1), 127–140.

    Article  Google Scholar 

  • ElMasry, G., Wang, N., & Vigneault, C. (2009). Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52(1), 1–8.

    Article  Google Scholar 

  • Erkinbaev, C., Derksen, K., & Paliwal, J. (2019). Single kernel wheat hardness estimation using near infrared hyperspectral imaging. Infrared Physics & Technology, 98, 250–255.

    Article  CAS  Google Scholar 

  • Esbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2002). Multivariate data analysis: in practice: an introduction to multivariate data analysis and experimental design. Multivariate Data: Analysis.

    Google Scholar 

  • FDA. (2004). PAT — A framework for innovative pharmaceutical development, manufacturing, and quality assurance. Rockville: U.S. Department of Health and Human Services. Food and Drug Administration Center for Biologics Evaluation and Research.

    Google Scholar 

  • Feng, Y.-Z., ElMasry, G., Sun, D.-W., Scannell, A. G. M., Walsh, D., & Morcy, N. (2013). Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chemistry, 138(2), 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  • Feuerstein, D., Parker, K. H., & Boutelle, M. G. (2009). Practical methods for noise removal: applications to spikes, nonstationary quasi-periodic noise, and baseline drift. Analytical Chemistry, 81(12), 4987–4994.

    Article  CAS  PubMed  Google Scholar 

  • Forchetti, D. A. P., & Poppi, R. J. (2017). Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder. LWT - Food Science and Technology, 76, 337–343.

    Article  CAS  Google Scholar 

  • Fu, X., & Chen, J. (2019). A review of hyperspectral imaging for chicken meat safety and quality evaluation: application, hardware, and software. Comprehensive Reviews in Food Science and Food Safety, 18(2), 535–547.

    Article  PubMed  Google Scholar 

  • Fu, X., Kim, M. S., Chao, K., Qin, J., Lim, J., Lee, H., Garrido-Varo, A., Pérez-Marín, D., & Ying, Y. (2014). Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses. Journal of Food Engineering, 124, 97–104.

    Article  CAS  Google Scholar 

  • Giovenzana, V., Beghi, R., Civelli, R., & Guidetti, R. (2015). Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends in Food Science & Technology, 46(2, Part B), 331–338.

    Article  CAS  Google Scholar 

  • Gowen, A., O'Donnell, C., Cullen, P., Downey, G., & Frias, J. (2007). Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 18(12), 590–598.

    Article  CAS  Google Scholar 

  • Haralick, R. M., & Shanmugam, K. (1973). Textural features for image classification. IEEE Trans Syst Man Cybern, (6), 610–621.

  • Huang, M., Kim, M., Chao, K., Qin, J., Mo, C., Esquerre, C., Delwiche, S., & Zhu, Q. (2016a). Penetration depth measurement of near-infrared hyperspectral imaging light for milk powder. Sensors, 16(4), 441.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang, M., Kim, M. S., Delwiche, S. R., Chao, K., Qin, J., Mo, C., Esquerre, C., & Zhu, Q. (2016b). Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio. Journal of Food Engineering, 181, 10–19.

    Article  CAS  Google Scholar 

  • Huang, M., Wang, Q., Zhang, M., & Zhu, Q. (2014a). Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. Journal of Food Engineering, 128, 24–30.

    Article  Google Scholar 

  • Huang, Y., Min, S., Duan, J., Wu, L., & Li, Q. (2014b). Identification of additive components in powdered milk by NIR imaging methods. Food Chemistry, 145, 278–283.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, A., Pu, H., & Sun, D.-W. (2018). Innovative nondestructive imaging techniques for ripening and maturity of fruits – a review of recent applications. Trends in Food Science & Technology, 72, 144–152.

    Article  CAS  Google Scholar 

  • Jawaid, S., Talpur, F. N., Sherazi, S., Nizamani, S. M., & Khaskheli, A. A. (2013). Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier transform infrared spectroscopy. Food Chemistry, 141(3), 3066–3071.

    Article  CAS  PubMed  Google Scholar 

  • Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International, 121, 479–496.

    Article  CAS  PubMed  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2011). Application of NIR hyperspectral imaging for discrimination of lamb muscles. Journal of Food Engineering, 104(3), 332–340.

    Article  Google Scholar 

  • Kamruzzaman, M., ElMasry, G., Sun, D.-W., & Allen, P. (2012). Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Analytica Chimica Acta, 714, 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Kamruzzaman, M., Makino, Y., & Oshita, S. (2016). Online monitoring of red meat color using hyperspectral imaging. Meat Science, 116, 110–117.

    Article  PubMed  Google Scholar 

  • Kong, W., Zhang, C., Liu, F., Nie, P., & He, Y. (2013). Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis. Sensors, 13(7), 8916–8927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulmyrzaev, A., Bertrand, D., & Dufour, É. (2008). Characterization of different blue cheeses using a custom-design multispectral imager. Dairy Science and Technology, 88(4–5), 537–548.

    Article  Google Scholar 

  • Li, B., Cobo-Medina, M., Lecourt, J., Harrison, N., Harrison, R. J., & Cross, J. V. (2018). Application of hyperspectral imaging for nondestructive measurement of plum quality attributes. Postharvest Biology and Technology, 141, 8–15.

    Article  Google Scholar 

  • Liu, Y., Pu, H., & Sun, D.-W. (2017). Hyperspectral imaging technique for evaluating food quality and safety during various processes: a review of recent applications. Trends in Food Science & Technology, 69, 25–35.

    Article  CAS  Google Scholar 

  • López-Maestresalas, A., Keresztes, J. C., Goodarzi, M., Arazuri, S., Jarén, C., & Saeys, W. (2016). Non-destructive detection of blackspot in potatoes by Vis-NIR and SWIR hyperspectral imaging. Food Control, 70, 229–241.

    Article  Google Scholar 

  • Lü, Q., & Tang, M. (2012). Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification. Procedia Environmental Sciences, 12, 1172–1179.

    Article  Google Scholar 

  • Ma, F., Qin, H., Shi, K., Zhou, C., Chen, C., Hu, X., & Zheng, L. (2016). Feasibility of combining spectra with texture data of multispectral imaging to predict heme and non-heme iron contents in pork sausages. Food Chemistry, 190, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., Sun, D.-W., Pu, H., Wei, Q., & Wang, X. (2019). Protein content evaluation of processed pork meats based on a novel single shot (snapshot) hyperspectral imaging sensor. Journal of Food Engineering, 240, 207–213.

    Article  CAS  Google Scholar 

  • Mahesh, S., Jayas, D., Paliwal, J., & White, N. (2015). Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food and Bioprocess Technology, 8(1), 31–40.

    Article  CAS  Google Scholar 

  • McGoverin, C. M., Engelbrecht, P., Geladi, P., & Manley, M. (2011). Characterisation of non-viable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics. Analytical and Bioanalytical Chemistry, 401(7), 2283–2289.

    Article  CAS  PubMed  Google Scholar 

  • Munera, S., Blasco, J., Amigo, J. M., Cubero, S., Talens, P., & Aleixos, N. (2019). Use of hyperspectral transmittance imaging to evaluate the internal quality of nectarines. Biosystems Engineering, 182, 54–64.

    Article  Google Scholar 

  • Munir, M., Wilson, D. I., Yu, W., & Young, B. (2018). An evaluation of hyperspectral imaging for characterising milk powders. Journal of Food Engineering, 221, 1–10.

    Article  CAS  Google Scholar 

  • Naganathan, G. K., Grimes, L. M., Subbiah, J., Calkins, C. R., Samal, A., & Meyer, G. E. (2008). Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Computers and Electronics in Agriculture, 64(2), 225–233.

    Article  Google Scholar 

  • Nakariyakul, S., & Casasent, D. P. (2011). Classification of internally damaged almond nuts using hyperspectral imagery. Journal of Food Engineering, 103(1), 62–67.

    Article  Google Scholar 

  • Nansen, C., Singh, K., Mian, A., Allison, B. J., & Simmons, C. W. (2016). Using hyperspectral imaging to characterize consistency of coffee brands and their respective roasting classes. Journal of Food Engineering, 190, 34–39.

    Article  Google Scholar 

  • Nanyam, Y., Choudhary, R., Gupta, L., & Paliwal, J. (2012). A decision-fusion strategy for fruit quality inspection using hyperspectral imaging. Biosystems Engineering, 111(1), 118–125.

    Article  Google Scholar 

  • Nguyen-Do-Trong, N., Dusabumuremyi, J. C., & Saeys, W. (2018). Cross-polarized VNIR hyperspectral reflectance imaging for non-destructive quality evaluation of dried banana slices, drying process monitoring and control. Journal of Food Engineering, 238, 85–94.

    Article  Google Scholar 

  • Pan, T. T., Sun, D. W., Cheng, J. H., & Pu, H. (2016). Regression algorithms in hyperspectral data analysis for meat quality detection and evaluation. Comprehensive Reviews in Food Science and Food Safety, 15(3), 529–541.

    Article  PubMed  Google Scholar 

  • Pérez-Santaescolástica, C., Fraeye, I., Barba, F. J., Gómez, B., Tomasevic, I., Romero, A., Moreno, A., Toldrá, F., & Lorenzo, J. M. (2019). Application of non-invasive technologies in dry-cured ham: an overview. Trends in Food Science & Technology, 86, 360–374.

  • Pierna, J. F., Baeten, V., Renier, A. M., Cogdill, R., & Dardenne, P. (2004). Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. Journal of Chemometrics: A Journal of the Chemometrics Society, 18(7–8), 341–349.

    Article  CAS  Google Scholar 

  • Priyashantha, H., Höjer, A., Saedén, K. H., Lundh, Å., Johansson, M., Bernes, G., Geladi, P., & Hetta, M. (2020). Use of near-infrared hyperspectral (NIR-HS) imaging to visualize and model the maturity of long-ripening hard cheeses. Journal of Food Engineering, 264, 109687.

    Article  CAS  Google Scholar 

  • Qiao, T., Ren, J., Craigie, C., Zabalza, J., Maltin, C., & Marshall, S. (2015). Singular spectrum analysis for improving hyperspectral imaging based beef eating quality evaluation. Computers and Electronics in Agriculture, 115, 21–25.

    Article  Google Scholar 

  • Rady, A. M., Guyer, D. E., Kirk, W., & Donis-González, I. R. (2014). The potential use of visible/near infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of potatoes. Journal of Food Engineering, 135, 11–25.

    Article  CAS  Google Scholar 

  • Rajkumar, P., Wang, N., Eimasry, G., Raghavan, G. S. V., & Gariepy, Y. (2012). Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering, 108(1), 194–200.

    Article  Google Scholar 

  • Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik, 10(3), 177–183.

    Article  Google Scholar 

  • Rinnan, Å., van den Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201–1222.

    Article  CAS  Google Scholar 

  • Rivera, N. V., Gómez-Sanchis, J., Chanona-Pérez, J., Carrasco, J. J., Millán-Giraldo, M., Lorente, D., Cubero, S., & Blasco, J. (2014). Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosystems Engineering, 122, 91–98.

    Article  Google Scholar 

  • Sanahuja, S., Fédou, M., & Briesen, H. (2018). Classification of puffed snacks freshness based on crispiness-related mechanical and acoustical properties. Journal of Food Engineering, 226, 53–64.

    Article  Google Scholar 

  • Sanz, J. A., Fernandes, A. M., Barrenechea, E., Silva, S., Santos, V., Gonçalves, N., Paternain, D., Jurio, A., & Melo-Pinto, P. (2016). Lamb muscle discrimination using hyperspectral imaging: comparison of various machine learning algorithms. Journal of Food Engineering, 174, 92–100.

    Article  Google Scholar 

  • Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639.

    Article  CAS  Google Scholar 

  • Sharma, A., Jana, A. H., & Chavan, R. S. (2012). Functionality of milk powders and milk-based powders for end use applications—a review. Comprehensive Reviews in Food Science and Food Safety, 11(5), 518–528.

    Article  CAS  Google Scholar 

  • Siripatrawan, U., & Makino, Y. (2015). Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging. International Journal of Food Microbiology, 199, 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Su, W.-H., & Sun, D.-W. (2017). Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassava flour and corn flour in organic Avatar wheat (Triticum spp.) flour. Journal of Food Engineering, 200, 59–69.

    Article  CAS  Google Scholar 

  • Sun, M., Zhang, D., Liu, L., & Wang, Z. (2017). How to predict the sugariness and hardness of melons: a near-infrared hyperspectral imaging method. Food Chemistry, 218, 413–421.

    Article  CAS  PubMed  Google Scholar 

  • Tatzer, P., Wolf, M., & Panner, T. (2005). Industrial application for inline material sorting using hyperspectral imaging in the NIR range. Real-Time Imaging, 11(2), 99–107.

    Article  Google Scholar 

  • Tung, K.-C., Tsai, C.-Y., Hsu, H.-C., Chang, Y.-H., Chang, C.-H., & Chen, S. (2018). Evaluation of water potentials of leafy vegetables using hyperspectral imaging. IFAC-PapersOnLine, 51(17), 5–9.

    Article  Google Scholar 

  • Van Beers, R., Kokawa, M., Aernouts, B., Watté, R., De Smet, S., & Saeys, W. (2018). Evolution of the bulk optical properties of bovine muscles during wet aging. Meat Science, 136, 50–58.

    Article  PubMed  Google Scholar 

  • Vermeulen, P., Suman, M., Fernández Pierna, J. A., & Baeten, V. (2018). Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging. Journal of Cereal Science, 84, 74–82.

    Article  CAS  Google Scholar 

  • Vidal, M., & Amigo, J. M. (2012). Pre-processing of hyperspectral images. Essential steps before image analysis. Chemometrics and Intelligent Laboratory Systems, 117, 138–148.

    Article  CAS  Google Scholar 

  • Wang, L., Liu, D., Pu, H., Sun, D.-W., Gao, W., & Xiong, Z. (2015). Use of hyperspectral imaging to discriminate the variety and quality of rice. Food Analytical Methods, 8(2), 515–523.

    Article  Google Scholar 

  • Wang, L., Sun, D.-W., Pu, H., & Zhu, Z. (2016). Application of hyperspectral imaging to discriminate the variety of maize seeds. Food Analytical Methods, 9(1), 225–234.

    Article  Google Scholar 

  • Whittaker, E. T. (1922). On a new method of graduation. Proceedings of the Edinburgh Mathematical Society, 41, 63–75.

    Article  Google Scholar 

  • Wu, D., & Sun, D.-W. (2013). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part I: fundamentals. Innovative Food Science & Emerging Technologies, 19, 1–14.

    Article  CAS  Google Scholar 

  • Wu, X., Song, X., Qiu, Z., & He, Y. (2016). Mapping of TBARS distribution in frozen–thawed pork using NIR hyperspectral imaging. Meat Science, 113, 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, Z., Sun, D.-W., Pu, H., Xie, A., Han, Z., & Luo, M. (2015). Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chemistry, 179, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J.-L., Riccioli, C., & Sun, D.-W. (2017). Comparison of hyperspectral imaging and computer vision for automatic differentiation of organically and conventionally farmed salmon. Journal of Food Engineering, 196, 170–182.

    Article  CAS  Google Scholar 

  • Yang, C., W. S. Lee and J. G. Williamson (2012). Classification of blueberry fruit and leaves based on spectral signatures.

  • Zhang, L., & Henson, M. J. (2007). A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Applied Spectroscopy, 61(9), 1015–1020.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X., Li, Y., Wei, W., & Peng, Y. (2019). Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Science, 149, 55–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Asma Khan would like to thank and acknowledge The University of Auckland, New Zealand, for providing the resources for this research.

Funding

Asma Khan received financial support for her Ph.D from The University of Engineering and Technology, Lahore, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Khan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Munir, M.T., Yu, W. et al. A Review Towards Hyperspectral Imaging for Real-Time Quality Control of Food Products with an Illustrative Case Study of Milk Powder Production. Food Bioprocess Technol 13, 739–752 (2020). https://doi.org/10.1007/s11947-020-02433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02433-w

Keywords

Navigation