Skip to main content
Log in

An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An accurate numerical approach is presented for computing two-phase flows with surface tension at low-Mach regime. To develop such a model, where slight compressible effects are taken into account as well as correct thermodynamical closures, both the liquid and the gas are considered compressible and described by a precise compressible solver. A low-Mach correction has been implemented to eliminate excessive numerical dissipation. The interface between two-phase flows is captured by the level set method that is considered to be sharp. The interface capturing issue of the level set method within the Eulerian framework is the key point of the two-phase flow simulations, and in this work we propose a high-order coupled time-space approach for interface advection. Several numerical test-cases have been employed to validate the present numerical approach and enlighten its good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And Well-Balanced Schemes for Sources. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Chalons, C., Girardin, M., Kokh, S.: An all-regime Lagrange-projection like scheme for the gas dynamics equations on unstructured meshes. Commun. Comput. Phys. 20(1), 188–233 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chalons, C., Kestener, P., Kokh, S., Stauffert, M.: A large time-step and well-balanced Lagrange-projection type scheme for the shallow water equations. Commun. Math. Sci. 15(3), 765–788 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Chanteperdrix, G.: Modélisation et simulation numérique des ecoulements diphasiques à interfaces libres. Application à l’étude des mouvements de liquides dans les réservoirs de véhicules spatiaux. Ph.D. thesis, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (2004)

  • Daru, V., Le Quéré, P., Duluc, M.C., Le Maitre, O.: A numerical method for the simulation of low mach number liquid–gas flows. J. Comput. Phys. 229(23), 8844–8867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Daru, V., Tenaud, C.: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193(2), 563–594 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978–1016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Desjardins, O., Moureau, V., Pitsch, H.: An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227(18), 8395–8416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Fechter, S., Munz, C.D., Rohde, C., Zeiler, C.: A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys. 336, 347–374 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Fuster, D., Popinet, S.: An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752–768 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Goncalvès, E., Patella, R.F.: Constraints on equation of state for cavitating flows with thermodynamic effects. Appl. Math. Comput. 217(11), 5095–5102 (2011)

    MathSciNet  MATH  Google Scholar 

  • Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. Am. Math. Soc. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  • Houim, R.W., Kuo, K.K.: A ghost fluid method for compressible reacting flows with phase change. J. Comput. Phys. 235, 865–900 (2013)

    Article  MathSciNet  Google Scholar 

  • Hu, X., Adams, N.A., Iaccarino, G.: On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. J. Comput. Phys. 228(17), 6572–6589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, X.Y., Khoo, B., Adams, N.A., Huang, F.: A conservative interface method for compressible flows. J. Comput. Phys. 219(2), 553–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Lalanne, B., Villegas, L.R., Tanguy, S., Risso, F.: On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method. J. Comput. Phys. 301, 289–307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, J.Y., Shen, Y., Ding, H., Liu, N.S., Lu, X.Y.: Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method. J. Comput. Phys. 328, 140–159 (2017)

    Article  MathSciNet  Google Scholar 

  • Ménard, T., Tanguy, S., Berlemont, A.: Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiph. Flow 33(5), 510–524 (2007)

    Article  Google Scholar 

  • Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213(2), 500–529 (2006)

    Article  MATH  Google Scholar 

  • Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224(2), 836–866 (2007)

    Article  MATH  Google Scholar 

  • Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Padioleau, T., Tremblin, P., Audit, E., Kestener, P., Kokh, S.: A high-performance and portable All-Mach Regime flow solver code with well-balanced gravity. Application to compressible convection. Astrophys. J. 875(2), 128 (2019)

    Article  Google Scholar 

  • Paolucci, S.: On the filtering of sound from the Navier–Stokes equations. Technical report 82-8257, Sandia National Laboratories (1982)

  • Popinet, S.: Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 49–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  • Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin (2013)

    Google Scholar 

  • Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)

    Article  MATH  Google Scholar 

  • Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Zuzio, D., Estivalezes, J.: An efficient block parallel AMR method for two phase interfacial flow simulations. Comput. Fluids 44(1), 339–357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We warmly thank Samuel Kokh, Pascal Tremblin and Thomas Padioleau from Maison de la Simulation for their helpful suggestions and fruitful discussions. Ziqiang Zou is funded by a Ph.D. Grant from China Scholarship Council (CSC). We also thank Davide Zuzio to provide incompressible level set numerical results for Rayleigh–Taylor test-case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Audit, E., Grenier, N. et al. An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime. Flow Turbulence Combust 105, 1413–1444 (2020). https://doi.org/10.1007/s10494-020-00125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00125-1

Keywords

Navigation