Skip to main content
Log in

14N NQR Quantification of Sodium Nitrite and Urotropin Using Singular Spectrum Analysis (SSA) for Data Filtering

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An 14N nuclear quadrupole resonance (NQR) spectroscopy method has been developed using the singular spectrum analysis (SSA) based on the principal components concept. For the first time, it was demonstrated that this method can be used as a low cost and non-destructive quantitative method for analyses of small amounts (< 100 mg) of nitrogen containing solids. NQR technique is closely related to nuclear magnetic resonance, but without need for external magnetic field, applicable to solid compounds with quadrupolar nuclei. The hardware configuration using a broadband matching transformer was constructed and advanced algorithms for quantitative analyses of 14N NQR spectra were outlined. The calibration curves obtained, after optimization, for the model compounds, sodium nitrite and urotropin (hexamethylenetetramine), showed excellent linearity up to 500 mg for sodium nitrite at a frequency of 4642 kHz and up to 300 mg for urotropin at a frequency of 3307 kHz. The limits of detection were determined as 41 mg and 24 mg, respectively. The experimental and analytical procedure was simple enough to allow relatively easy practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Vickers, M. Bernier, S. Zambrzycki, F.M. Fernandez, P.N. Newton, C. Caillet, BMI Glob. Health 3, e000725 (2018). https://doi.org/10.1136/bmjgh-2018-000725

    Article  Google Scholar 

  2. R.W. Schurko, C.A. O'Keefe, M.P. Hildebrand, K.E. Johnston, L.A. O’Dell, A.J. Rossini. in Proceeding of the 255th ACS National Meeting and Exposition (New Orleans, LA, 18–22 March 2018) Paper CATL 513

  3. D.A. Hirsh, Y.C. Su, H.C. Nie, W. Xu, D. Stueber, N. Variankaval, R.W. Schurko, Mol. Pharm. 15, 4038–4048 (2018). https://doi.org/10.1021/acs.molpharmaceut.8b00470

    Article  Google Scholar 

  4. N. Sinyavsky, P. Dolinenkov, G. Kupriyanova, Appl. Magn. Reson. 45, 471–482 (2014). https://doi.org/10.1007/s00723-014-0533-7

    Article  Google Scholar 

  5. J. Jover, S. Aissani, L. Guendouz, A. Thomas, D. Canet, in: Magnetic Resonance Detection of Explosives and Illicit Materials, T. Apih, B. Rameev, G. Mozzhukhin, J. Barras (eds.) (Springer, Dordrecht, 2014) pp. 77–86

  6. J. Shinohara, H. Sato-Akaba, H. Itozaki, Solid State Nucl. Magn. Reson. 43–44, 27–31 (2012). https://doi.org/10.1016/j.ssnmr.2012.02.003

    Article  Google Scholar 

  7. D.F. He, M. Tachiki, H. Itozaki, Supercond. Sci. Technol. 21, 015023 (2008). https://doi.org/10.1088/0953-2048/21/01/015023

    Article  ADS  Google Scholar 

  8. J. Luznik, V. Jazbinsek, J. Pirnat, J. Seliger, Z. Trontelj, J. Magn. Reson. 212, 149–153 (2011). https://doi.org/10.1016/j.jmr.2011.06.023

    Article  ADS  Google Scholar 

  9. M. Ostafin, B. Nogaj, Measurement 40, 43–54 (2007). https://doi.org/10.1016/j.measurement.2006.04.003

    Article  Google Scholar 

  10. T.N. Rudakov, P.A. Hayes, J. Magn. Reson. 183, 96–101 (2006). https://doi.org/10.1016/j.jmr.2006.08.001

    Article  ADS  Google Scholar 

  11. J. Fraissard, O. Lapina, Explosives Detection Using Magnetic and Nuclear Resonance Techniques (Springer Verlag, Berlin, 2009)

    Book  Google Scholar 

  12. J. Seliger, V. Žagar, T. Apih, A. Gregorovič, M. Latosińska, G.A. Olejniczak, J.N. Latosińska, Eur. J. Pharm. Sci. 85, 18–30 (2016). https://doi.org/10.1016/j.ejps.2016.01.025

    Article  Google Scholar 

  13. J.N. Latosińska, M. Latosińska, G.A. Olejniczak, J. Seliger, V. Žagar, J. Chem. Inf. Model. 54, 2570–2584 (2014). https://doi.org/10.1021/ci5004224

    Article  Google Scholar 

  14. E. Pindelska, A. Sokal, L. Szeleszczuk, D.M. Pisklak, W. Kolodziejski, J. Pharm. Biomed. Anal. 100, 322–328 (2014). https://doi.org/10.1016/j.jpba.2014.07.011

    Article  Google Scholar 

  15. A.C. Pinon, A.J. Rossini, C.M. Widdifield, D. Gajan, L. Emsley, Mol. Pharm. 12, 4146–4153 (2015). https://doi.org/10.1021/acs.molpharmaceut.5b00610

    Article  Google Scholar 

  16. J. Seliger, V. Žagar, J. Phys. Chem. A 117, 1651–1658 (2013). https://doi.org/10.1021/jp3117038

    Article  Google Scholar 

  17. J. Barras, D. Murnane, K. Althoefer, S. Assi, M.D. Rowe, I.J.F. Poplett, G. Kyriakidou, J.A.S. Smith, Anal. Chem. 85, 2746–2753 (2013). https://doi.org/10.1021/ac303267v

    Article  Google Scholar 

  18. J. Seliger, V. Žagar, Solid State Nucl. Magn. Reson. 47–48, 47–52 (2012). https://doi.org/10.1016/j.ssnmr.2012.09.001

    Article  Google Scholar 

  19. N.R. Butt, E. Gudmundson, A. Jakobsson, in: Magnetic Resonance Detection of Explosives and Illicit Materials, T. Apih, B. Rameev, G. Mozzhukhin, J. Barras (eds.) (Springer, Dordrecht, 2014) pp. 19–33

  20. M. Ibrahim, D.J. Parrish, T.W.C. Brown, P.J. McDonald, Sensors 19(14), 3153 (2019). https://doi.org/10.3390/s19143153

    Article  Google Scholar 

  21. G.V. Mozzhukhin, I.G. Mershiev, S.V. Molchanov, G.S. Kuprijanova, Method of detecting nuclear quadrupole resonance and nuclear magnetic resonance signals, Patent RU 2 490 618, 2011101684/28, G01N 24/08 (2006.01).

  22. M. Srivastava, C.L. Anderson, J.H. Freed, IEEE Access 4, 3862–3877 (2016). https://doi.org/10.1109/access.2016.2587581

    Article  Google Scholar 

  23. K. Zhu, T. Su, X. He, J. Niu, Procedia Eng. 7, 57–62 (2010). https://doi.org/10.1016/j.proeng.2010.11.009

    Article  Google Scholar 

  24. N. Golyandina, A. Zhigljavsky, Singular Spectrum Analysis for Time Series (Springer, Berlin, 2013). https://www.springer.com/gp/book/9783642349126

    Book  Google Scholar 

  25. J. Harmouche, D. Fourer, F. Auger, P. Borgnat, P. Flandrin, IEEE Trans. Signal Process. 66, 251–263 (2018). https://doi.org/10.1109/tsp.2017.2752720

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Oja, R.A. Marino, P.J. Bray, Physics Lett. A 26, 11–12 (1967). https://doi.org/10.1016/0375-9601(67)90530-0

    Article  ADS  Google Scholar 

  27. G.V. Mozzhukhin, B.Z. Rameev, N. Dogan, B. Aktas, J. Magn. Reson. 193, 49–53 (2008). https://doi.org/10.1016/j.jmr.2008.04.015

    Article  ADS  Google Scholar 

  28. G. Petersen, P.J. Bray, J. Chem. Phys. 64, 522–530 (1976). https://doi.org/10.1063/1.432241

    Article  ADS  Google Scholar 

  29. A.N. Garroway, M.L. Buess, J.P. Yesinowski, J.B. Miller, Proc. SPIE 2092, 318–327 (1994). https://doi.org/10.1117/12.171251

    Article  Google Scholar 

  30. P.M.J. Szell, D.L. Bryce, Concepts Magn. Reson. Part A 45A, e21412 (2016). https://doi.org/10.1002/cmr.a.21412

    Article  Google Scholar 

  31. Z. Lavric, J. Pirnat, J. Luznik, J. Seliger, V. Zagar, Z. Trontelj, S. Srcic, J. Pharm. Sci.-US 99, 4857–4865 (2010). https://doi.org/10.1002/jps.22186

    Article  Google Scholar 

  32. H. Hassani, D. Thomakos, Stat. Interface 3, 377–397 (2010)

    Article  MathSciNet  Google Scholar 

  33. N. Golyandina, Stat. Interface 3, 259–279 (2010). https://doi.org/10.4310/SII.2010.v3.n3.a2

    Article  MathSciNet  Google Scholar 

  34. N. Golyandina, A. Korobeynikov, A. Shlemov, K. Usevich, J. Stat. Softw. 67, 1–78 (2015)

    Article  Google Scholar 

  35. N. Golyandina, E. Osipov, J. Stat. Plan. Infer. 137, 2642–2653 (2007). https://doi.org/10.1016/j.jspi.2006.05.014

    Article  Google Scholar 

  36. B.S. Anatolyevich, ALGLIB 3.16.0 for C#. (Alglib.net, 2019). https://www.alglib.net/. Accessed 1 Nov 2019

Download references

Acknowledgements

D.A. Kolářová is grateful to Prof. K. Ventura for supervision of her master theses that included some experiments carried out using the described spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Španěl.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubišta, J., Kolářová, D.A., Shestivska, V. et al. 14N NQR Quantification of Sodium Nitrite and Urotropin Using Singular Spectrum Analysis (SSA) for Data Filtering. Appl Magn Reson 51, 449–460 (2020). https://doi.org/10.1007/s00723-020-01197-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01197-y

Navigation